首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The homoebox-containing genes of the Hox-5 complex are expressed in different but overlapping domains in limbs during murine development. The more 5' the position of these genes in the complex, the later and more distal is their expression. Antero-posterior differences are also observed. A model is proposed that accounts for the establishment of these expression domains in relation to the existence of a morphogen released by the zone of polarizing activity. Comparison of these observations with the expression patterns of the genes of Hox complexes in the early embryo suggests that similar molecular mechanisms are involved in the positional signalling along the axes of both the embryonic trunk and the fetal limbs.  相似文献   

5.
6.
D G Wilkinson  S Bhatt  M Cook  E Boncinelli  R Krumlauf 《Nature》1989,341(6241):405-409
The vertebrate hindbrain develops in a segmental pattern, with distinctive groups of neurons originating from different segments. We report here that members of the Hox-2 cluster of murine homoeobox genes are expressed in segment-specific patterns in the developing hindbrain, with successive genes having boundaries at two-segment intervals. These data indicate that Hox genes specify segment phenotype, a role analogous to that of their Drosophila homologues.  相似文献   

7.
A common feature of Drosophila homoeo box genes appears to be their spatially restricted expression patterns during morphogenesis. Using Northern blot analysis and in situ hybridization to mouse tissue sections, the spatially restricted expression of a newly identified mouse homoeo box locus, Hox-3, within the central nervous system of newborn and adult mice has been demonstrated.  相似文献   

8.
A distinct Hox code for the branchial region of the vertebrate head.   总被引:20,自引:0,他引:20  
The branchial region of the vertebrate head forms through complex interactions involving rhombomeric segments, neural crest and branchial arches. It is though that aspects of their patterning mechanisms are linked and involve Hox-2 genes, whose overlapping and spatially restricted expression domains represent a combinatorial code for generating regional diversity. Vertebrates possess four Hox clusters of Antennapedia class homeobox genes, related to each other by duplication and divergence from a common ancestral complex. In consequence, at equivalent positions in different clusters there are highly related genes known as subfamilies or paralogous groups. As Hox-2 genes cannot fully account for patterning individual rhombomeres, we investigated whether offsets in expression limits of paralogous genes could account for the generation of regional diversity. We report here that, with the exception of the labial subfamily, paralogues show identical expression limits in rhombomeres, cranial ganglia and branchial arches, providing a combinatorial Hox code for the branchial region that seems to be different in organization to that of the trunk.  相似文献   

9.
O Chisaka  T S Musci  M R Capecchi 《Nature》1992,355(6360):516-520
Gene targeting in mouse embryo-derived stem cells has been used to generate mice with a disruption in the homeobox gene Hox-1.6. Mice heterozygous at the Hox-1.6 locus appear normal, whereas Hox-1.6-/Hox-1.6- mice die at or shortly after birth. These homozygotes exhibit profound defects in the formation of the external, middle and inner ears as well as in specific hindbrain nuclei, and in cranial nerves and ganglia. The affected tissues lie within a narrow region along the anteroposterior axis of the mouse but are of diverse embryonic origin. The set of defects associated with the disruption of Hox-1.6 is distinct from and nonoverlapping with that of the closely linked Hox-1.5 gene. But both mutations cause loss, rather than homeotic transformation, of tissues and structures.  相似文献   

10.
11.
T Lufkin  M Mark  C P Hart  P Dollé  M LeMeur  P Chambon 《Nature》1992,359(6398):835-841
Murine Hox genes have been postulated to play a role in patterning of the embryonic body plan. Gene disruption studies have suggested that for a given Hox complex, patterning of cell identity along the antero-posterior axis is directed by the more 'posterior' (having a more posterior rostral boundary of expression) Hox proteins expressed in a given cell. This supports the 'posterior prevalence' model, which also predicts that ectopic expression of a given Hox gene would result in altered structure only in regions anterior to its normal domain of expression. To test this model further, we have expressed the Hox-4.2 gene more rostrally than its normal mesoderm anterior boundary of expression, which is at the level of the first cervical somites. This ectopic expression results in a homeotic transformation of the occipital bones towards a more posterior phenotype into structures that resemble cervical vertebrae, whereas it has no effect in regions that normally express Hox-4.2. These results are similar to the homeotic posteriorization phenomenon generated in Drosophila by ectopic expression of genes of the homeotic complex HOM-C (refs 7-10; reviewed in ref. 3).  相似文献   

12.
It has been suggested that Hox genes play an important part in the patterning of limbs, vertebrae and craniofacial structures by providing an ordered molecular system of positional values, termed the Hox code. Little is known about the nature of the signals that govern the establishment and regulation of Hox genes, but retinoic acid can affect the expression of these genes in cell lines and in embryonic tissues. On the basis of experimental and clinical evidence, the hindbrain and branchial region of the head are particularly sensitive to the effects of retinoic acid but the phenotypes are complex and hard to interpret, and how and if they relate to Hox expression has not been clear. Here we follow the changes induced by retinoic acid to hindbrain segmentation and the branchial arches using transgenic mice which contain lacZ reporter genes that reveal the endogenous segment-restricted expression of the Hox-B1 (Hox-2.9), Hox-B2(Hox-2.8) and Krox-20 genes. Our results show that these genes rapidly respond to exposure to retinoic acid at preheadfold stages and undergo a progressive series of changes in segmental expression that are associated with specific phenotypes in hindbrain of first branchial arch. Together the molecular and anatomical alterations indicate that retinoic acid has induced changes in the hindbrain Hox code which result in the homeotic transformation of rhombomeres (r) 2/3 to an r4/5 identity. A main feature of this rhombomeric phenotype is that the trigeminal motor nerve is transformed to a facial identity. Furthermore, in support of this change in rhombomeric identity, neural crest cells derived from r2/3 also express posterior Hox markers suggesting that the retinoic acid-induced transformation extends to multiple components of the first branchial arch.  相似文献   

13.
Cooper MT  Bray SJ 《Nature》1999,397(6719):526-530
The Drosophila eye, a paradigm for epithelial organization, is highly polarized with mirror-image symmetry about the equator. The R3 and R4 photoreceptors in each ommatidium are vital in this polarity; they adopt asymmetrical positions in adult ommatidia and are the site of action for several essential genes. Two such genes are frizzled (fz) and dishevelled (dsh), the products of which are components of a signalling pathway required in R3, and which are thought to be activated by a diffusible signal. Here we show that the transmembrane receptor Notch is required downstream of dsh in R3/R4 for them to adopt distinct fates. By using an enhancer for the Notch target gene Enhancer of split mdelta, we show that Notch becomes activated specifically in R4. We propose that Fz/Dsh promotes activity of the Notch ligand Delta and inhibits Notch receptor activity in R3, creating a difference in Notch signalling capacity between R3 and R4. Subsequent feedback in the Notch pathway ensures that this difference becomes amplified. This interplay between Fz/Dsh and Notch indicates that polarity is established through local comparisons between two cells and explains how a signal from one position (for example, the equator in the eye) could be interpreted by all ommatidia in the field.  相似文献   

14.
P Murphy  D R Davidson  R E Hill 《Nature》1989,341(6238):156-159
The process of segmentation, in which the developing embryo is divided into repetitive structures along its antero-posterior (A-P) axis, as a means of organizing and coordinating the body plan is found in a wide range of organisms. In Drosophila, homoeotic genes are involved in all levels of segmental organization and in determining segment identity. The roles of these genes in segmentation have been found mainly by mutational studies, but also by in situ hybridization, which has shown their domains of expression. In contrast to Drosophila, however, embryonic expression of homoeobox-containing genes in vertebrate organisms has not been found to follow a segmental pattern. Vertebrate segmentation can be clearly seen in the mesodermal somites, but repetitive morphological structures in the central nervous system (neuromeres) have only recently been shown to have developmental significance. Neuromeres in the hindbrain (rhombomeres) have been defined as segmental units by their pattern of nerve formation in the developing chick and by the alternating expression of Krox-20, a gene encoding a zinc-finger DNA-binding protein, in the 9.5-day-old mouse. Here we report that a mouse homoeobox-containing gene, Hox-2.9, is expressed in a segment-specific manner in the developing mouse hindbrain. This expression is in a region which is flanked by the regions of expression of Krox-20, and is precisely contained within a single neuromere, rhombomere 4.  相似文献   

15.
导体球壳内的电偶极子的电荷禁闭   总被引:1,自引:0,他引:1  
该文将电荷禁闭作为夸克禁闭理论的类比.用分离变量法与镜象法相结合,求解了被禁闭于半径为R的接地导体球壳内的电偶极子静电场所满足的泊松方程,求得了电偶极子及其感应电荷在球壳内的电势表达式.并根据电偶极子在接地导体球壳内的位置分三种情况进行了分析、计算和讨论.得到了位于接地导电平面附近的电偶极子及其感应电荷的电势的表达式.为了能明显的看出其镜象特征还利用数学物理方法对电势表达式进行变形处理,并分析了其镜象电荷、镜象偶极子的空间位置.  相似文献   

16.
P Hasty  R Ramírez-Solis  R Krumlauf  A Bradley 《Nature》1991,350(6315):243-246
  相似文献   

17.
J Sampedro  I Guerrero 《Nature》1991,353(6340):187-190
In the Drosophila embryo, mutations in the segment polarity gene patched (ptc) cause the replacement of the middle region of each segment by a mirror-image duplication of the remaining structures, including the parasegmental border. This gene, which encodes a transmembrane protein, is initially expressed in a generalized way at blastoderm, but later stops being transcribed in cells expressing the engrailed gene, and even later in cells in the middle of the parasegment. The genes engrailed (en) and wingless (wg) are also segment-polarity genes, and they are expressed in adjacent stripes flanking the parasegment borders in the embryo; in ptc mutants wg expression extends anteriorly and an ectopic stripe of en expression is induced. The suggestion has been made that ptc must be transcribed in a specific subset of cells to prevent en expression anterior to the wg-expressing stripe. Here we report that unrestricted expression of ptc from a heat-shock promoter has no adverse effect on development of Drosophila embryos. The heat-shock construct can also rescue ptc mutants, restoring wg expression to its normal narrow stripe. The ectopic en stripe fails to appear, but the normal one remains unaffected. The results imply that, despite its localized requirement, the restricted expression of ptc does not itself allocate positional information.  相似文献   

18.
将电荷禁闭作为夸克禁闭理论的类比.以分离变量法与镜象法相结合,求解了被禁闭于半径为R的接地导体球壳内的电偶极子静电场所满足的泊松方程,求得了电偶极子及其感应电荷在球壳内的电势表达式.并根据电偶极子在接地导体球壳内的位置分3种情况进行了分析、计算和讨论,得到了位于接地导电平面附近的电偶械及极子及其感应电荷的电势表达式.为了能明显的看出其镜象特征,利用数学物理方法对电势表达式进行变形处理,并分析了其镜象电荷、镜象偶极子的空间位置.  相似文献   

19.
将镜像法用于介质中的静电问题,讨论了电偶极子和介质球系统的镜像电荷分布,得出用电像系描述电势的严格表达式,并与电偶极子和导体球系统的镜像电荷分布进行了比较。  相似文献   

20.
The skeletal muscles of the limbs develop from myogenic progenitors that originate in the paraxial mesoderm and migrate into the limb-bud mesenchyme. Among the genes known to be important for muscle development in mammalian embryos are those encoding the basic helix-loop-helix (bHLH) myogenic regulatory factors (MRFs; MyoD, Myf5, myogenin and MRF4) and Pax3, a paired-type homeobox gene that is critical for the development of limb musculature. Mox1 and Mox2 are closely related homeobox genes that are expressed in overlapping patterns in the paraxial mesoderm and its derivatives. Here we show that mice homozygous for a null mutation of Mox2 have a developmental defect of the limb musculature, characterized by an overall reduction in muscle mass and elimination of specific muscles. Mox2 is not needed for the migration of myogenic precursors into the limb bud, but it is essential for normal appendicular muscle formation and for the normal regulation of myogenic genes, as demonstrated by the downregulation of Pax3 and Myf5 but not MyoD in Mox2-deficient limb buds. Our findings show that the MOX2 homeoprotein is an important regulator of vertebrate limb myogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号