共查询到20条相似文献,搜索用时 9 毫秒
1.
在复杂背景的图像中,用直方图作为目标的特征模板,依据颜色分布进行匹配,具有较好的稳定性.Mean Shift算法是计算最优解的一个高精度算法,能在良好的目标初始化的前提下跟踪到无遮掩的目标.但其新目标由手工标定,特征模板计算量很大,且容易丢失遮掩情况下的目标,所以对Mean Shift算法进行了四处改进.改进后的算法能够准确地初始化、并快速精确地跟踪目标. 相似文献
2.
基于Mean Shift算法跟踪视频中运动目标 总被引:2,自引:0,他引:2
针对Mean Shift算法在视频中跟踪目标与背景的像素差值不明显时跟踪效果不佳,提出了Mean Shift改进算法.实验表明,该算法能有效、准确地跟踪视频中的运动目标,计算量小,可以满足实时性要求高的场合. 相似文献
3.
针对卡尔曼滤波和Mean Shift算法结合后对严重遮挡和遮挡后复出失效且实时性差的问题,提出一种基于卡尔曼滤波和Mean Shift动态结合的改进算法. 通过在算法中加入Bhattacharyya系数进行遮挡程度判断,并根据遮挡系数的阈值选择使用卡尔曼滤波或线性预测法更新Mean Shift迭代起点. 实验结果表明,该方法能成功实现大范围连续遮挡和目标复出情况下红外目标的跟踪,并且迭代次数和跟踪时间分别减少了9.68%和17.58%,提高了跟踪的鲁棒性和实时性. 相似文献
4.
针对传统Mean Shift算法跟踪窗口固定不变,无法对不断改变尺寸的车辆目标进行有效跟踪的问题,文中根据车辆跟踪的特点,提出一种基于Mean Shift和C-V模型的车辆跟踪算法.首先利用传统Mean Shift得到初始跟踪窗口,然后根据C-V方法所提取的车辆形状信息对跟踪窗口的中心和大小做进一步修正,在跟踪过程中综合利用了目标颜色、形状等信息,同时对传统C-V方法进行改进,采用一种新的初始化水平集函数表达方法.实验结果表明,文中算法在满足实时性要求的同时,大大提高了车辆跟踪精度. 相似文献
5.
目的针对背景复杂的彩色视频图像序列,提出了一种梯度和颜色直方图相结合的双线索人脸跟踪算法。方法首先利用颜色确定肤色区域,再根据人头的椭圆形状利用梯度确定头部轮廓,从而获取人脸区域。在跟踪过程中采用粒子滤波方法得到人脸初始粒子与位置;然后用Mean Shift算法进行粒子更新,判断目标运动方向。结果与结论该方法对复杂背景下人脸旋转、遮挡及背景肤色干扰下的跟踪,具有较强的鲁棒性,能够更好地克服在视频跟踪中的遮挡问题。对于丢失目标的跟踪情况进行改进还有一定的困难,这也是以后研究的重点。 相似文献
6.
提出了一种改进的Mean shift目标跟踪算法,该方法能够有效的排除非目标点对跟踪结果的影响,并且得到新的权值,增强了该像素属于目标的可能性,削弱了背景信息对目标模型的影响,提高了在复杂背景下对运动目标跟踪的鲁棒性.实验表明该方法能够有效实现复杂场景下的目标跟踪. 相似文献
7.
红外图像具有被动成像、抗干扰性强、目标识别能力强和全天候工作的特点,已经被广泛应用于军事侦察、监控和制导等领域.在背景干扰或者遮挡情况下传统的Mean Shift跟踪算法的跟踪存在不连续的问题.针对人体目标的活跃性和特殊性,设计一种在Mean Shift算法基础上结合卡尔曼滤波和Bhattacharyya系数遮挡判定因子的目标跟踪系统.当遮挡发生时,通过滤波器预测目标下一帧的位置,继续实现跟踪.测试结果表明:在背景干扰或者遮挡的情况下该跟踪系统可以有效地对目标进行准确跟踪. 相似文献
8.
直敏 《沈阳师范大学学报(自然科学版)》2012,30(4):515-518
在复杂背景的视频图像中,实时、准确、连续、长距离的跟踪以人为对象的目标,是一件很困难的任务。人体对象在跟踪目标图像位置的变化时,一直随着姿态的变化而改变,因此这是一个非常典型的非刚体目标,对这类目标采用简单的模板匹配的方法进行目标跟踪,无法达到准确的跟踪。均值漂移(Mean Shift)是现今最受欢迎的对象跟踪方法之一,广泛的运用于人脸的跟踪,文章提出了一种基于均值漂移算法的复杂背景视频图像检测与跟踪算法。在运动目标跟踪中,提出了以直方图为模式特征,以均值漂移算法为核心算法的目标跟踪算法,通过实验表明该跟踪算法能对候选目标进行运动检测,完成实时跟踪,同时有效抑制了局部遮挡、背景混乱等,过滤了伪目标,保证了跟踪的可靠性。 相似文献
9.
针对运用单一颜色特征描述运动目标时抗干扰性较差的问题,提出一种融合灰度共生矩阵和颜色特征的Mean-Shift目标跟踪算法.采用灰度共生矩阵推导的6个纹理特征参数和颜色特征分别表征跟踪目标,引入马氏距离计算纹理特征的相似度,并结合Bhattacharyya系数计算颜色特征的相似度,同时利用Mean Shift算法进行目标定位.实验表明,改进算法能在复杂背景下,有效、准确地实现目标跟踪. 相似文献
10.
Mean Shift算法的收敛性讨论 总被引:4,自引:0,他引:4
作为一种有效的迭代算法, Mean Shift具有的良好的特性, 在聚类分析、视觉跟踪、图像平滑和图像分割等领域得到广泛应用.李乡儒指出了Comuniciu关于算法收敛性证明中的错误, 并给出了一个算法收敛的间接条件. 但是用什么样的核函数、在什么条件下算法收敛仍然没有直接的结果. 本文首先指出最近发表的一篇文献中关于MeanShift算法收敛条件及证明过程理解上的错误.然后对常用的核函数用于算法时的收敛性进行分析, 得到了几个对算法扩展和应用有意义的结论. 相似文献
11.
针对经典的Mean Shift算法在目标部分遮挡或者场景光照变化时容易出现跟踪目标丢失的问题,文章运用一种基于分块权重的方法处理目标部分遮挡问题,每一部分的权重系数由来自不同的块和背景颜色信息共同决定.为了适应场景光照的变化,提出快速并且稳定的更新机制.实验分析,该方法可实现快速有效的跟踪. 相似文献
12.
运动目标检测与跟踪的算法一直以来是计算机视觉领域中的核心课题,也是智能视频监控中的关键技术。它主要是包含了图像处理、模式识别、人工智能等领域内的成果。着重研究运动目标检测与跟踪的算法[13],并通过编程实现方法的有效性。在运动检测方面,主要应用的算法包括背景差分法、帧间差分法以及光流法,指出了这些算法的优缺点以及适用范围。在运动目标跟踪方面,主要研究了特征匹配跟踪算法中的Mean Shift算法[19]。 相似文献
13.
针对Mean shift(即MS)算法理论上的不足以及跟踪目标时的邻域跟踪局限性,提出将Mean shift算法与尺度无迹卡尔曼滤波器(Scaled unscented Kalman filter,SUKF)相结合的实时目标跟踪算法.该算法利用尺度无迹卡尔曼滤波器获取Mean shift算法的初始位置,然后,利用Mean shift算法获取跟踪位置.通过分析跟踪区域内横纵向直线的统计变化获取目标的尺度变化,依此自适应调节Mean shift跟踪算法中核函数带宽,并对高速公路上快速运动的车辆进行跟踪实验.研究结果表明:该算法与固定核窗宽Mean shift算法相比,对目标跟踪更准确;SUKF 滤波使MS的迭代次数减少,跟踪的实时性提高;核窗宽自适应调节可使跟踪误差降低到50%以下. 相似文献
14.
分析了传统Mean Shift跟踪算法在外观模型对光照变化敏感以及外观模型更新上容易积累误差等缺点,结合了传统Mean Shift 跟踪算法计算速度快和易于组合的优点,设计了两种不同外观建模的Mean Shift跟踪算法。第一种Mean Shift跟踪算法采用传统的RGB颜色模型提取外观模型,第二种采用对光照变化不敏感的非色彩与梯度信息提取外观模型。结合这两种跟踪算法,通过这两种跟踪算法跟踪的目标进行加权得到的目标位置,以及根据协同更新的原理对这两种跟踪器的外观模板进行更新。这样不仅使得跟踪准确率得到了一定的提高,而且对外观变化的适应能力也大大的提高。 相似文献
15.
本文提出一种基于Mean Shift的方法来追踪并重构运动人体的骨架结构。首先,手动的将运动目标的部分肢体标识出来,为每一部分都设定Mean Shift跟踪模板,由于单纯的应用原始Mean Shift没有利用人体信息,本文提出一种结合肤色模型和边缘信息的Mean Shift算法将运动人体的骨架运动准确的跟踪,最后利用上面跟踪的结合各运动区域的运动信息,将人体骨架完整的重构出来。实验结果表明,本文方法能够实时的有效的对运动人体的骨架进行重构。 相似文献
16.
目标跟踪是视频运动图像数据分析前期的一项关键技术,通过对目标点的定位跟踪,以便研究人员在跟踪过程中提取运动目标的相关参数,有助于对视频图像中目标的运动技术进行分析。结合模板匹配快速定位算法与Mean Shift算法,研究了运动图像序列中目标点的自动定位与跟踪问题。实验结果显示,算法具有良好跟踪效果。 相似文献
17.
针对原始的Mean Shift跟踪算法虽能准确地估计目标位置,但对目标尺度和方向不能实现自适应估计,结合目标模型与候选目标区域的候选模型得到了反向投影图,此反向投影图可表示图像中像素点属于目标的概率,将反向投影图的矩特征应用到原始Mean Shift跟踪算法框架,实现了目标尺度和方向适应性Mean Shift跟踪.实验结果表明:该算法能有效跟踪尺度和方向变化的目标. 相似文献
18.
本文介绍了人眼定位与跟踪算法。首先采用灰度投影曲线与灰度直方图估计初始闽值相结合的恩想进行人眼检测;然后运用Kalman算法与Mean Shift算法进行人眼的跟踪。实验表明该方法具有计算简单、快速、有效等优点。 相似文献
19.
基于Mean Shift方法的视频车辆检测与分割 总被引:1,自引:1,他引:1
提出了一种基于Mean Shift方法的视频车辆检测和分割方法.首先将交通场景图像与路面区域所对应的二值掩模图像进行“与”运算以排除无关背景干扰,并对所得的结果图像用Mean Shift聚类方法进行分割以得到原始的分割图像.然后根据区域的面积、分布以及颜色的均匀性和相似性等特征有效过滤出路面区域.进一步基于颜色的不相似度量,将路面区域置“黑”,所有其他区域置“白”,对路面区域图像进行二值化.最后通过特定的后处理过程可把路面区域中所存在的动、静态车辆检测出来. 相似文献
20.
针对视觉目标跟踪领域中,采用单一特征的跟踪算法鲁棒性较差的问题,提出一种基于博弈论思想的多特征融合目标跟踪算法。在Mean Shift视觉跟踪框架下,将目标的颜色特征和运动特征作为两个博弈者,通过寻求二者博弈的纳什均衡,使不同特征对跟踪结果的贡献达到最佳平衡,进而更好地体现特征融合的优势。实验结果表明,该算法对目标剧烈运动、遮挡和背景多运动物干扰有较强的鲁棒性。通过基于博弈论的多特征融合方式在传统Mean Shift算法的基础上提出新算法,算法具有较好的跟踪性能。 相似文献