首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The strontium isotopic compositions (87Sr/86Sr) of samples including soils, bedrock, soil waters, drip waters and their corresponding speleothems in the Qixing Cave (QXC), Guizhou Province, China, were systemically measured and analyzed. The results indicate that there are significant Sr isotopic differences among samples. The mean 87Sr/86Sr ratios in drip water for the samples 1#, 4# and 9# were 0.709568, 0.709139 and 0.708761, respectively, which possibly result from different flow paths, residence times, and other hydrogeological processes in the unsaturated zone overlying QXC. Meanwhile, levels of 40.8%, 57.6% and 72.4% of Sr in drip waters for 1#, 4# and 9#, respectively, were derived from bedrock dissolution, which was calculated by the mixture model of the two end-members (soil and bedrock). There is, however, no positive correlation between the relative proportion from bedrock dissolution (δ13C value is 1.8‰) and drip water δ13CDIC values. The mean drip water δ13CDIC value in 1# is the heaviest (–4.5‰) with the lowest contribution rate of bedrock dissolution, whereas the value in 9# is the lightest (–9.3‰) with the highest contribution rate of bedrock dissolution. The proportion from host rock dissolution in 4# is higher than that in 1# and lower than that in 9#, while its mean drip water δ13CDIC value (–8.6‰) is higher than that of 9# and lower than that for 1#. This suggests that the prior calcite precipitation (PCP) processes in the unsaturated zone overlying the cave are responsible for the δ13CDIC value differences between different drip waters, and not bedrock dissolution. Furthermore, this study also demonstrates that the 87Sr/86Sr ratios of speleothems in the 1# and 4# mainly reflect the variation in the relative proportions from the soil system (soil water) and bedrock dissolution overlying the cave. It is, therefore, feasible to use the strontium isotopic signals of speleothems as an indicator for soil chemical weathering intensity, and consequently as a monsoon proxy in the study area.  相似文献   

2.
Gao  Jing  Tian  LiDe  Liu  YongQin  Gong  TongLiang 《科学通报(英文版)》2009,54(16):2758-2765
Given the potential use of stable isotope in the paleoclimate reconstruction from lacustrine records as well as in the local hydrology cycle, it is crucial to understand the processes of stable isotope evolution in catchment in the Tibetan Plateau region. Here we present a detailed study on the water oxygen isotope based on 2 years observation including precipitation, river water and lake water in the Yamzho Lake, south of the Tibetan Plateau. Temporal variation of local precipitation 5180 shows an apparent "monsoon cycle". In monsoon season, 5180 in waters is lower. In non-monsoon season, δ^18O in precipitation and lake water is higher and higher river δ^18O exists in spring, probably reflecting the effect of land surface evaporation, together with the higher δ^18O values in spring precipitation. It is also found that the surface lake water δ^18O varies seasonally and annually. The lower lake water δ^18O in the late summer is apparently related to the summer monsoon precipitation. The mean δ^18O value of lake water in 2007 is 1.2‰ higher than that in 2004, probably due to the less monsoon precipitation in summer of 2007, as can be confirmed from the precipitation data at the Langkazi meteorological data. It is also found that an obvious shift of vertical lake water δ^18O reflects the fast mixture of lake water. δ^18O values of lake water are over 10‰ higher than those of precipitation and river water in this region due to the evaporation fractionation. The modeled results show that the evaporation process of the lake water is sensitive to relative humidity, and the present lake water δ^18O reflects a relative humidity of 51% in the Yamzho Lake. It shows that the lake will take 30.5 years to reach present lake water δ^18O given a large shift in the input water δ^18O. The modeled results also reveal that surface lake water temperature and inflow δ^18O have slight effect on the isotopic balance process of lake water in the Yamzho Lake.  相似文献   

3.
The δ 18O records of ostracode shells in sediments of core QH-2000 from Qinghai Lake can be used as a better proxy to reflect monsoon changes. Low monsoon precipitation between 17.5 and 11 cal. ka BP is indicated by positive δ 18O values averaging 2.37‰. A fast shift in δ 18O from positive at 11 cal. ka BP to negative at 10 cal. ka BP indicates sharp increase of monsoon precipitation. An interval of generally high monsoon precipitation is observed between 10 and 6 cal. ka BP with δ 18O values averaging -2.15‰. Decrease of monsoon precipitation between 6 and 2.5 cal. ka BP is indicated by positive δ 18O values. δ 18O keeps positive values averaging 3.0‰ between 2.5 and 0 cal. ka BP suggesting low high monsoon precipitation. The climatic changes indicated by δ 18O records of ostracode shells in sedi- ments of core QH-2000 from Qinghai Lake and our broader regional comparison show that the climate in Qinghai Lake since the late Glacial is probably controlled by southwest monsoon other than southeast monsoon.  相似文献   

4.
In this study, we analyzed stable calcium isotope results of authigenic carbonates from two cold seep areas of the Dongsha area and the Baiyun Sag in the northern South China Sea. The stable isotopes of carbon and oxygen as well as the mineral composition of authigenic carbonates were used to investigate control calcium isotope fractionation. The δ44/40Ca ratios of the southwestern Dongsha area samples ranged from 1.21‰ to 1.52‰ and the ratio of the Baiyun Sag sample was 1.55‰ of the SRM915a isotope standard. X-ray diffraction analysis showed that the carbonate samples consisted of dolomite, calcite and aragonite, with small amounts of high-Mg calcite and siderite. The δ13C values of the carbonates of the southwestern Dongsha area varied between δ49.21‰ and δ16.86‰ of the Vienna PeeDee Belemnite (VPDB) standard and the δ18O values ranged from 2.25‰ to 3.72‰ VPDB. The δ13C value of the Baiyun Sag sample was 2.36‰ VPDB and the δ18O value was 0.44‰ VPDB. The δ13C values of the carbonates of the southwestern Dongsha area revealed there is methane seeping into this area, with a variable contribution of methane-derived carbon. The sampled carbonates covered a range of δ13C values suggesting a dominant methane carbon source for the light samples and mixtures of δ13C values for the heavier samples, with possibly an organic or seawater carbon source. The δ18O values indicated that there is enrichment in 18O, which is related to the larger oxygen isotope fractionation in dolomite compared to calcite. The results of the Baiyun Sag sample exhibited normal seawater carbon and oxygen isotopic values, indicating that this sample is not related to methane seepage but instead to precipitation from seawater. The relatively high δ44/40Ca values indicated either precipitation at comparatively high rates in pore-water regimes with high alkalinity, or precipitation from an evolved heavy fluid with high degrees of Ca consumption (Raleigh type fractionation). The dolomite samples from the Dongsha area revealed a clear correlation between the carbon and calcium isotope composition, indicating a link between the amount and/or rate of carbonate precipitation and methane contribution to the bicarbonate source. The results of the three stable isotope systems, mineralogy and petrography, show that mineral composition, the geochemical environment of authigenic carbonates and carbon source can control the calcium isotope fractionation.  相似文献   

5.
Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition (δ^13C) of total organic carbon (TOC) and higher plant-derived long-chain n-alkanes, with the latter reported as weighted mean values. The two sets of δ^13C values are significantly correlated and show similar trends in spatial variation. The spatial distribution of δ^13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes. This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing condi- tions for C4 plants. Furthermore, δ^13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ^13C of a soil samples remains relatively constant. Our data demonstrate that in eastern China, soil δ^13C composition of both TOC and long-chain n-alkanes is effective indicators of C3/C4 ratios of the prevailing vegetation. This work suggests that -22‰ and -32‰ are good es- timated end members for the weighted mean δ^13C values of long-chain n-alkanes (C27, C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation, allowing us to reconstruct paleovegetation trends.  相似文献   

6.
This paper presents the stable isotope data of the snow pack and summer precipitation collected at the July 1 Glacier, Qilian Mountains in northwest China and analyses their relationships with meteorologi- cal factors. On an event scale, there is no temperature effect on the δ 18O values in the summer pre- cipitation, whereas the amount effect is shown to be clear. By tracing the moisture transport history and comparing the precipitation with its isotopic composition, it is shown that this amount effect not only reflects the change in moisture trajectory, which is related to the monsoon activities, but is also associated with the cooling degree of vapor in the cloud, the evaporation of falling raindrops and the isotopic exchange between the falling drops and the atmospheric vapor. As very little precipitation occurs in winter, the snow pack profile mainly represents the precipitation in the other three seasons. There are low precipitation δ 18O ratios in summer and high ratios in spring and autumn. The Meteoric Water Line (MLW) for the summer precipitation is δ D = 7.6 δ 18O 13.3, which is similar to that at Delingha, located in the south rim of the Qilian Mountains. The MWL for the snow pack is δ D = 10.4 δ 18O 41.4, showing a large slope and intercept. The deuterium excess (d) of the snow pack is positively correlated with δ 18O, indicating that both d and δ 18O decrease from spring to summer and increase from early autumn to early spring. This then results in the high slope and intercept of the MWL. Sea- sonal fluctuations of d in the snow pack indicate the change of moisture source and trajectory. During spring and autumn, the moisture originates from continental recycling or rapid evaporation over rela- tively warm water bodies like Black, Caspian and Aral Seas when the dry westerly air masses pass over them, hence very high d values in precipitation are formed. During summer, the monsoon is responsi- ble for the low d values. This indicates that the monsoon can reach the western part of the Qilian Mountains.  相似文献   

7.
Based on the data of δ^18O in precipitation during the period of April 2006 through May 2007 in the upper catchment of the main stream of the Heihe River in the Qilian Mountains, we found that there existed an evident altitude effect on δ^18O in precipitation, and the δ^18O-altitude gradient was -0.18‰/100 m. When δ^18O in river water at the outlet of the mountainous drainage area of the main stream of the Heihe River was combined with the δ^18O-altitude relation, it was realized that the mountainous runoff was generated mostly at high altitudes. Using two component models, we revealed that 80.2% of the annual total mountainous runoff amount was generated at the alpine permafrost-snow-ice zone with an altitude of above 3600 m a.s.I.  相似文献   

8.
The nitrogen isotope of soil is of emerging significance as an indicator of climatic change and biogeochemical cycle of nitrogen in nature systems. In this paper, the nitrogen content and isotopic composition of modern ecosystems from arid and semiarid Loess Plateau in northwestern China, including plant roots and surface soil, were determined to investigate trends in δ15N variation of plant roots and soil along a precipitation and temperature gradient in northwestern China under the East Asian Monsoon clim...  相似文献   

9.
An oxygen isotope record of a stalagmite from Huanglong Cave in the eastern Qinghai-Tibet Plateau dated with 230Th and 210Pb methods provides variations of the Asian monsoon with an average resolu-tion of 1 year over the past 50 years. This study shows that the δ18O of dripwater in the cave represents the annual mean δ18O of local meteoric precipitation and the stalagmites were deposited in isotopic equilibrium. A comparison of the stalagmite δ18O record with instrumentally meteorological data indi-cates that shifts of the δ18O are largely controlled by the amount effect of meteoric precipitation con-veyed through the southwest monsoon(the Indian monsoon) and less affected by temperature. Therefore,the variations of δ18O record reflect the changes in monsoon precipitation on inter-annual time scales under the influence of the southwest monsoon. Like many other stalagmite δ18O records in the Asian monsoon regions,the δ18O record of the stalagmite from Huanglong Cave also reveals a gradually enriched trend during the past 50 years,i.e. relatively enriched in 18O. This trend may indicate the decline of the Asian monsoon intensity which is consistent with the decrease of monsoon indices. The weakening of the modern Asian monsoon well matched with the temperature changes in strato-sphere,which may illustrate that the weakening of the monsoon mainly results from the lowering of solar radiation.  相似文献   

10.
Analysis of daily precipitation samples for stable oxygen isotopes (δ^18O) collected at the Shiquanhe and Gerze (Gaize, Gertse) stations in the Ngari (Ali) region on the western Tibetan Plateau indicates that air temperature affects the δ^18O variations in precipitation at these stations. In summer, Shiquanhe and Gerze show strongly similar trends in precipitation δ^18O, especially in simultaneous precipitation events. Moreover, both stations experienced low δ^18O values in precipitation during the active monsoon period, resulting from the southwest monsoon (the summer phase of the Indian monsoon). However, during the break monsoon period (during the summer rainy season, when the monsoon circulation is disrupted), δ^18O values in summer precipitation remain relatively high and local moisture recycling generally controls the moisture sources. Air temperature correlations with δ^18O strengthen during the non-monsoon period (January--June, and October--December) due to continental air masses and the westerlies. In addition, evaporation also influences the δ^18O variations in precipitation. The observed temporal and spatial variations of δ^18O in precipitation on the western Tibetan Plateau and adjacent regions show that the late May and early June-the late August and early September time frame provides an important period for the transportation of moisture from various sources on the Tibetan Plateau, and that the region of the West Kunlun-Tanggula Ranges acts as a significant climatic divide on the Plateau, perhaps for all of western China.  相似文献   

11.
The foliar C and N stable isotopic compositions (δ^13C and δ^15N) and the relationships between these compositions and environmental factors of C3 plants in the Ethiopia Rift Valley were investigated. There were three distribution patterns for foliar δ^13C with mean values of -26.7‰±0.4‰, -29.7‰ ±0.6‰ , and -26.9‰± 1.2‰ in cold-moist, temperate-moist, and arid-hot environments, respectively. The δ^15N values ranged from -1.4‰ ±1.7‰ to 14.3‰ ± 0.1‰, with higher values under arid-hot conditions and the lowest values in plants growing at higher altitudes under cold-moist conditions. A strong negative relationship between mean annual precipitation and δ^15N explained more than half of the observed variation in the δ^15N values (r2= 0.54, P 〈 0.001); a modest positive relationship was also found between δ^15N and temperature (r2 = 0.32, P 〈 0.01). A weakly positive relationship existed between δ^13C and temperature, and changes in δ^13C values with precipitation and altitude followed quadratic curves. This suggests a shift in the effects of water and heat conditions caused by altitude on carbon isotopic discrimination.  相似文献   

12.
Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ 13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ 13Ca values are closely correlated to the body δ 13Corg values, expressed as δ 13Ca = 1.021 δ 13Corg 14.38 (R = 0.965; N = 31). This relationship indicates that δ 13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3-in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.  相似文献   

13.
Trace metals of Mg, Sr and Ba in a stalagmite (SZ2) collected from Suozi Cave in NE Sichuan, Central China, were analyzed with ICP-AES. The stalagmite was dated to have developed between 120 and 103 ka BP. Results indicate that the Mg/Ca, Sr/Ca and Ba/Ca ratios of SZ2 varied between (9500-14700) 10 6 , (54-123) 10 6 and (31-82) 10 6 , respectively. The three records displayed significant millennial scale variations, which correlate with changes in past climate and environment. Lower values of Mg/Ca ratios and higher values of Sr/Ca and Ba/Ca ratios of SZ2 occurred during relatively cold-dry marine isotope stage (MIS) 5d, while the opposite trend was observed during relatively warm-humid MIS 5c. Trace metals in speleothems can be affected by distribution coefficients or trace metal concentrations in solutions from which speleothems precipitate. Temperature is suggested to be the dominant controller of Mg/Ca ratios in SZ2, whereas the Sr/Ca and Ba/Ca ratios may have been influenced by surface soil and atmospheric dust activities and prior calcite precipitation in Suozi Cave. Further investigations are warranted as to whether Sr/Ca and Ba/Ca ratios were affected by temperature and growth rate of the speleothem. The shifts of Mg/Ca, Sr/Ca and Ba/Ca records in SZ2 during the transition from MIS 5d to 5c apparently were earlier than the oxygen isotope record ( 18 O) of the same stalagmite. This possibly indicates (1) that atmospheric dust activity (the mechanism affecting SZ2 Sr/Ca and Ba/Ca ratios) is closely related to temperature, and (2) that temperature changes (dominated by solar insolation) precedes change in speleothem 18 O records which are controlled by both summer monsoons and winter temperatures.  相似文献   

14.
In this study, we simulated and analyzed the monthly variations of stable water isotopes in different reservoirs at Manaus, Brazil, using the Community Land Model (CLM) that incorporates stable isotopic effects as a diagnostic tool for understanding stable water isotopic processes, filling the observational data gaps and predicting hydrometeorological processes. The simulation results show that the δ^18O values in precipitation, vapor and surface runoff have distinct seasonality with the marked negative correlations with corresponding water amount. Compared with the survey results by the International Atomic Energy Agency (IAEA) in co-operation with the World Meteorological Organization (WMO), the simulations by CLM reveal the similar temporal distributions of the δ^18O in precipitation. Moreover, the simulated amount effect between monthly δ^18O and monthly precipitation amount, and MWL (meteoric water line) are all close to the measured values. However, the simulated seasonal difference in the δ^18O in precipitation is distinctly smaller than observed one, and the simulated temporal distribution of the δ^18O in precipitation displays the ideal bimodal seasonality rather than the observed single one. These mismatches are possibly related to the simulation capacity and the veracity in forcing data.  相似文献   

15.
Mo isotopes along with Nd isotopes and other geochemical characteristics of the Phanerozoic clastic sediments from the northern margin of the Yangtze block were analyzed by MC-ICP-MS and some other techniques, spanning the period from Cambrian to Jurassic. The δ 98Mo values and εNd(t ) in these sedimets were observed to exhibit a large range of variation (?0.65‰―+1.87‰, ?1.46―?10.90, respec-tively). Specifically, the sample from Late Permian Maokou Formation has relatively positive values in both δ 98Mo and...  相似文献   

16.
Knowledge of seasonal climate change is one of the key issues facing Quaternary paleoclimatic studies and estimating seasonal climate change is difficult,especially changes such as seasonal length on glacial-interglacial timescales.The stable isotope composition from seasonal land snail shells provides the potential to reveal seasonal climatic features.Two modern land snail species,cold-aridiphilous Pupilla aeoli and thermo-humidiphilous Punctum orphana,were collected from different climatic zones in 18 localities across the Chinese Loess Plateau,spanning 11 degrees of longitude and covering a range of 1000 km2.The duration of the snail growing season(temperature ≥10℃) was shorter(202 ± 6 d) in the eastern Loess Plateau compared with in the western Loess Plateau(162 ±7 d).The δ13C of P.aeoli shells was ?9.1‰ to ?4.7‰ and ?5.0‰ to 0.3‰ for δ18O.For P.orphana,the δ13C ranged from ?9.1‰ to ?1.9‰ and ?8.9‰ to ?2.9‰ for δ18O.Both the δ13C and δ18O differences between the two snail species were reduced from the east to the western Loess Plateau(2.8‰ to 0.2 ± 1.1‰ for δ13C and 4.7‰ to 2.9 ± 1.3‰ for δ18O).These isotopic differences roughly reflect the difference in the growing season lengths between the east and west Loess Plateau indicating that the duration of the snail growing season shortens by 15 d or 19 d if the difference decreases by 1‰ in δ13C or δ18O,respectively.Thus,the difference in δ13C and δ18O between both snail species can be used to reveal the length of the snail growing season in the past.Based on our investigation,the length of the snail growing seasons from the Xifeng region during the last 75 ka was reconstructed.During the mid-Holocene(8-3 ka),the mean isotopic difference from both snail species reached maximum values of 2.6 ± 0.7‰ and 2.1 ± 1.4‰ for δ13C and δ18O,respectively.This was followed by MIS 3 that ranged from 2.5 ± 0.4‰ for δ13C and 1.6 ± 0.8‰ for δ18O.The Last Glacial Maximum changed by only 0.2‰ and 0.4‰ for δ13C and δ18O,respectively.Therefore,we estimate that the duration of the snail growing seasons to be ~200 ± 10 d during the mid-Holocene,190 ± 6 d in MIS 3 and 160 ± 3 d during the last glacial period.  相似文献   

17.
Agriculture, industry and hydroelectric power in south Asia are heavily dependent on the performance of the summer (June to September) monsoon rainfall, which provides 75—90% of the annual rainwater over most parts of the area. A weak monsoon year generally corresponds to low crop yields. And strong monsoon usually produces abundant crops, although too much rainfall may produce devastating floods. However, modeling efforts to forecast the monsoon have met with only moderate success[1]. Prev…  相似文献   

18.
A 16.8 m firn core of middle Himalayas was recovered on the col of Dasuopu glacier in August 2006, being 7000 m above sea level. A total of 317 samples were measured for stable oxygen isotope ratios (6180) and major ion concentrations (Na+, NH+, K+, Mg2+, Ca2+, Cl-, SO4^2-, and NO3^-. The firn core dating and seasonal partitioning were carried out based on the marked seasonal variations along the stable oxygen isotopes and crustal species (Ca2+, Mg2+) profiles. The multi-parameters and high-resolution glaciochemical data set of Dasuopu firn core recorded the detailed chemical characteristics of pre cipitation in high-elevation region, middle Himalayas, since 1991 A.D., which mainly originated from the crustal and anthropogenic sources, while the sea-salt contribution was minor. The seasonal variability of major ion concentrations was dominated by the seasonal alternation of the prevalent air mass, atmospheric circulation situation and precipitation regime. Linear regression analysis indicated that most of the variance in annual ionic fluxes can be explained by a linear dependence on snow accumulation rate.  相似文献   

19.
151 in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogeneity in δ^18O values, with variation in different rocks from -8.5‰ to 9.7‰ and within one sample from 2‰ to 12‰. No measurable difference in δ^18O was observed between protolith magmatic (detrital) zircons and metamorphic recrystallized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the metamorphic zircons have inherited the oxygen isotopic compositions of protolith zircons despite the HP to UHP metamorphism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxygen isotope composition are recognized, with one having δ^18O values of 6‰-7‰ for old protolith of 1.9-2.5 Ga ages and the other 0‰-2‰ for young protolith of 0.7-0.8 Ga ages. The latter anomalously low δ^18O values of zircons indicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.  相似文献   

20.
Yang  XiaoXin  Xu  BaiQing  Yang  Wei  Qu  DongMei  Lin  Ping-Nan 《科学通报(英文版)》2009,54(16):2742-2750
Seasonal δ^18O variation in water on the southeast Tibetan Plateau has been studied, showing the consistent variation pattern of δ^18O with altitude indicative of relevant atmospheric circulation processes. Study shows a similar variation pattern of fixed-site river water δ^18O with that of the precipitation δ^18O in southeast Tibet. δ^18O in regional rivers in southeast Tibet demonstrates a gradual depletion with increasing altitude, though the rates vary seasonally. The most depleted river ^18O occurs during the monsoon period, with the lowest δ^18O/altitude lapse rate. The river ^18O during the westerly period is also depleted, together with low δ^18O/altitude lapse rate. The pre-monsoon rivers witness the most enriched ^18O with least significant correlation coefficient with the linear regression, whilst the postmonsoon rivers witness the largest δ^18O/altitude lapse rate. Different coherence of seasonal δ^18O variation with the altitude effect is attributed to different moisture supplies. Though sampling numbers vary with seasons, the δ^18O-H linear correlation coefficients all reach the 0.05 confidence level, thus witnessing the variation features of δ^18O in seasonal river water due to the influence of atmospheric general circulation and land surface processes revealed from the altitudinal lapse rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号