首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
真空铝热还原炼锂新工艺中富锂熟料的制备   总被引:1,自引:0,他引:1  
常压煅烧氢氧化锂、氧化铝和氧化钙混合物得到富锂熟料,真空铝热还原该熟料得到金属锂及可制备氢氧化铝的12Ca O·7Al2O3型还原渣.研究了制团压力、煅烧温度、煅烧时间对煅烧烧损率及锂还原率的影响.结果表明:在制团压力为30 MPa,煅烧温度为750~800℃,煅烧时间为60~90 min的条件下,烧损率基本保持在34%左右;该条件所得富锂熟料在还原温度1 100℃,还原时间90 min,铝粉不过量的条件下进行真空铝热还原得到锂还原率较高.该煅烧工艺适用于真空铝热还原炼锂新工艺中富锂熟料的制备.  相似文献   

2.
以煅烧硼镁石为原料真空铝热还原炼镁得到的还原渣中富含12CaO·7Al2O3,该还原渣可通过氢氧化钠和碳酸钠的混合碱液溶出得到铝酸钠溶液和富硼料,铝酸钠溶液通过碳酸化分解可制备氢氧化铝.以硼镁石铝热炼镁所得还原渣为原料,研究了溶出温度、时间、碳酸钠及氢氧化钠质量浓度对氧化铝溶出率的影响,并对碳分产物进行性能研究.结果表明,在氢氧化钠质量浓度12g/L,碳碱质量浓度210g/L,溶出时间120min,溶出温度95℃,液固比为6的条件下,炼镁还原渣中氧化铝的溶出率为8521%.氢氧化铝产品为α-Al(OH)3,白度大于98,SEM显示其晶粒小于1μm.  相似文献   

3.
硅铝合金真空热法还原硼镁石矿实验研究   总被引:2,自引:0,他引:2  
为了解决低品位硼镁石矿的合理利用问题,首次以硅铝合金为还原剂,应用真空热法还原原理将煅烧后矿石中的游离氧化镁还原为金属镁.正交实验结果表明,最佳还原条件为:还原温度1 453 K、还原时间2.0 h、制团压力35 MPa、还原剂过量系数10%,该条件下镁的还原率可达到63.7%.得到的还原余料可用做生产无碱玻璃球的原料.该工艺对环境无污染,为硼镁石矿的综合利用开辟了一条新途径.  相似文献   

4.
以云南元江红土镍矿为研究对象,采用XRD,EM-EDS和化学成分分析等手段,研究红土镍矿真空碳热还原反应的热力学、还原产物的物相转变和金属镁的挥发冷凝机理,探讨红土镍矿真空碳热还原过程中镁的行为.实验结果表明:真空中氧化镁的还原是固体碳直接还原的固-固反应,临界反应温度为1 476 K,生成的金属镁极易挥发,在冷凝系统凝华收集;还原产物主要有SiC,Fe-Si合金,Mg2SiO4,Mg和SiO气体;SiO在冷凝系统生成Si和SiO2;反应温度的升高、还原煤用量的增加和反应时间的延长,镁的还原率都显著增大;不同种类的添加剂催化效果不同,CaO和CaF2的催化效果较好:在温度较低的冷凝系统,Mg容易与CO,O2和Si发生反应生成MgO和Mg2Si,影响金属镁的纯度.  相似文献   

5.
熔融还原炼镁热力学分析和模拟   总被引:1,自引:0,他引:1  
为了提高现有硅热还原炼镁工艺中原料之间的反应速度,提出熔融还原炼镁新技术。在煅烧白云石中添加适量的Al2O3和SiO2,使整个体系在反应时呈完全熔融状态,从而加快反应速度。通过软件模拟、热力学分析和实验验证,在适当配比下于1 600℃可以获得完全熔化的CaO-MgO-Al2O3-SiO2四元系。通过对熔融还原反应的热力学计算得出,平衡状态下还原温度为1 600℃时,对应镁蒸汽的露点为870℃。结果表明熔融还原炼镁新技术是可行的。  相似文献   

6.
采用等温溶解法研究三元体系Li+、Mg2+//borate–H2O在288.15,K时稳定相平衡,并测定其溶解度及物化性质(密度、折光率和p H),根据实验数据绘制稳定相图及物化性质–组成图.结果表明:该三元体系为水合物I型,无复盐及固溶体形成;相图中有1个共饱点E(Li2B4O7·3H2O+Mg2B6O11·15H2O),对应的液相组成(质量分数)为:Li2B4O72.88%、Mg B4O7 0.02%,2条单变量曲线AE和BE,2个单盐结晶区,对应的平衡固相为Li2B4O7·3H2O和Mg2B6O11·15H2O;随着Li2B4O7的含量增大,Mg B4O7的含量减小,表明Li2B4O7对Mg B4O7存在一定的盐析效应.研究发现:章氏硼镁石在该体系288.15,K时不能够稳定存在,极易与水反应转化为更为稳定的多水硼镁石.稳定平衡液相的密度、折光率、p H均随着液相中Li2B4O7浓度的变化呈有规律的变化.其中,密度和折光率随着Li2B4O7浓度的增大而增大,到共饱点处达到最大值,采用经验公式拟合密度和折光率,拟合值与实验值吻合得较好.  相似文献   

7.
以蛋清蛋白作为有机基质,Mg2+作为无机离子,研究了蛋清蛋白和Mg2+对碳酸钙仿生矿化过程的协同诱导作用,并对矿化产物进行了XRD,FT-IR和SEM表征。结果表明,在两者的共同作用下,通过控制实验参数,采用直接沉淀和气体扩散两种矿化方法均可获得纯文石相Ca CO3亚微米束,但两种方法的制备条件和亚微米束的致密度存在一定的差异。分析了蛋清蛋白和Mg2+对碳酸钙仿生矿化过程的调控机制:在亚微米束形成过程中,镁离子的作用是促进文石相Ca CO3的成核与生长,而蛋清蛋白分子主要功能是对镁离子诱导形成的文石型Ca CO3粒子进行组装并最终得到亚微米束。  相似文献   

8.
电解工艺对NiFe2O4基金属陶瓷阳极耐腐蚀性能的影响   总被引:1,自引:0,他引:1  
研究了5%Ni-NiFe2O4金属陶瓷惰性阳极在冰晶石-氧化铝熔体中的腐蚀行为及电解参数对腐蚀率的影响.研究结果表明:当Al2O3质量分数大于5%或接近饱和时,电极腐蚀率较低;当Al2O3质量分数小于2%时,电极腐蚀加快;当在冰晶石熔体中不加Al2O3时,会发生灾变腐蚀;当分子比为2.2~2.4,电解温度为960℃时,腐蚀率较低;溶解的铝和高电流密度对惰性阳极的正常工作不利,电流密度适当时有利于降低阳极的腐蚀率;导致惰性阳极腐蚀的主要原因有铝热还原,碳化铝的溶解及电沉积、陶瓷基体的氟化反应.  相似文献   

9.
硅热法炼镁预制球团的实验研究   总被引:2,自引:0,他引:2  
在硅热法炼镁物料预处理过程中,白云石煅烧时经常会损失大约5%的细粉料.为了解决这一问题,提出了将白云石先造球再进行煅烧处理的新工艺.主要研究了白云石球团进行分步煅烧后,球团内白云石的烧损率、煅白的灼减量及水化活度.结果表明:白云石制团后经过分步煅烧,球团内煅白的质量完全达到硅热法炼镁的要求,并有效地缩短了白云石煅烧时间.当煅烧1h时,球团内白云石的烧损率为45%,煅白的灼减量为189%左右,水化活度为35%,球团的吸湿远远小于白云石常规烧结.  相似文献   

10.
水泥窑烧成带用镁铬砖残砖产生的铬污染已经引起人们的重视,本文主要研究一种可替代镁铬砖在水泥窑上使用的新型耐火材料Mg O-Al2O3-Fe2O3(Fe O)系耐火材料。利用XRD和SEM分别研究了以高纯镁砂与电熔铝铁尖晶石制备的镁-铁铝尖晶石砖和烧结镁铁砂与电熔铝镁尖晶石制备的镁铁砖烧成后铁的存在状态。结果发现:铁铝尖晶石在高温下分解出Fe2+与Al3+,与Mg O相互扩散,Fe2+与Mg O反应生成(Fe,Mg)Oss固溶体,Al3+与Mg O反应,形成Mg Al2O4,试样中Fe2+的扩散速度大于Al3+;在高温状态下,烧结镁铁砂中Mg Fe2O4的Fe3+不稳定转变为Fe2+,Fe2+扩散到镁铝尖晶石表面,取代了部分Mg2+的位置,形成镁铁铝固溶体。  相似文献   

11.
采用液相法制备催化剂Mg1.5PW12O40,Ba1.5PW12O40,Ca1.5PW12O40,Na3PW12O40,K3PW12O40和(NH4)3PW12O40 6种Keggin型磷钨酸盐, 并采用X射线衍射(XRD)和透射电子显微镜(TEM)表征其微观结构和表面形貌. 以250 W高压汞灯为紫外光源, 通过光催化降解甲基橙评估其光催化活性. 实验结果表明: 6种粒子均保持基本的Keggin结构骨架, 属于Keggin[KG*8]结构杂多酸型催化剂; Mg1.5PW12O40,Ba1.5PW12O40和Ca1.5PW12O40降解甲基橙的活性较高, 其中Mg1.5PW12O40的活性最高.  相似文献   

12.
碳酸锂、氧化铝和氧化钙混合常压煅烧可获得LiAlO2熟料,经真空铝热还原可得金属锂,同时得到铝酸钙系还原渣,主要成分为CaO·Al2O3和12CaO·7Al2O3.为综合利用该还原渣,通过混合碱液溶出、碳酸化分解回收氢氧化铝.研究溶出温度、溶出时间、还原渣粒度、碳酸钠质量浓度、氢氧化钠质量浓度、金属锂还原率对氧化铝溶出率的影响.结果表明:以锂还原率97%的炼锂还原渣为原料,粒度分布d○90 74μm、溶出温度95℃、溶出时间120min、碳酸钠质量浓度240g/L及氢氧化钠质量浓度8.9g/L的条件下,氧化铝的溶出率为80.73%.溶出的铝酸钠溶液经碳分可获得体积平均粒径6.50μm及白度值96.9的氢氧化铝.  相似文献   

13.
采用液相复合-轧制技术制备不同w○Cu的可发泡预制坯及闭孔泡沫铝材,研究了w○Cu对泡沫铝泡孔结构的影响.结果表明:随着w○Cu的增加,泡孔结构的均匀性增加,孔径减小,泡孔合并产生的大泡孔数量减少,但泡沫体的塌缩和老化特征增强.对比不同w○Cu的预制坯的膨胀曲线,随着w○Cu的增加,预制坯的最大膨胀率先增大后减小,且达到最大膨胀率的发泡时间明显减少.微观结构分析表明:在AlSi9合金中加入Cu,生成了CuAl2O4和CuAl2,CuAl2O4提高熔体的黏度,减小了重力排液及毛细作用的影响,提高了泡沫的稳定性.CuAl2先于AlSi9熔化,在晶界上形成熔池,气泡提前形核长大,使发泡过程提前完成.  相似文献   

14.
为了从不锈钢粉尘中回收利用Fe,Cr和Ni等,对不锈钢粉尘热压块制备及其自还原过程进行了研究.在热压温度为200℃,热压压力为35 MPa条件下,抗压强度达到900 N/个以上.高温条件下,煤热解产生的挥发分可参与不锈钢粉尘还原反应,当还原温度为1 400,1 450℃时,挥发分还原作用率达到0.4.据XRD分析和热力学计算,自还原过程中含铬物质的物相转变顺序为Fe Cr2O4,Cr2O3,Cr7C3,[Cr]Fe-Cr-Ni-C.当还原温度为1 450℃,烟煤中固定碳与粉尘中可去除氧的物质量的比(xc/xo)为0.72时,不锈钢粉尘热压块不能完全还原;当xc/xo大于0.8,还原20 min时,不锈钢粉尘热压块能完全还原.  相似文献   

15.
采用还原烧结-磁选法处理高铁铝土矿,考察了氧化钙对烧结及烧结产品铝铁分离效果的影响,借助于X射线衍射仪、扫描电子显微镜,研究了不同氧化钙用量下还原烧结产品的物相组成及微观特性.结果表明,当氧化钙的质量分数为70%时,烧结物料的金属化率达到了93.95%,磁选精矿中铁的质量分数为83.10%,富铝渣的Al2O3浸出率为61.14%,Ca O分别与Al2O3和Si O2全部生成了12Ca O·7Al2O3和Ca2Si O2,铁元素得到较好的还原,同时非铁物质能够与铁颗粒分离.  相似文献   

16.
利用双层石墨坩埚,模拟铁液滴下穿过炉渣的过程,主要研究渣中Mg O,Al2O3质量分数对炉渣硫质量分数的影响,探索镁铝比与高炉渣硫质量分数的关系.结果表明渣中Mg O质量分数由6%提高到12%时,炉渣脱硫能力逐渐提高,由12%提高到14%,脱硫能力逐渐降低;渣中Al2O3质量分数由9%提高到15%时,炉渣脱硫能力逐渐降低,但降低幅度较小,当Al2O3质量分数由15%提高到17%时,炉渣脱硫能力大大降低;Mg O质量分数小于12%,Al2O3质量分数小于15%,提高炉渣镁铝比可以显著提高炉渣脱硫能力.  相似文献   

17.
对首钢京唐生产IF钢的同一浇次前2炉的RH精炼、镇静和中间包浇铸过程进行了系统取样,并利用Aspex自动扫描电子显微镜分析统计了钢中夹杂物的成分、尺寸等信息.研究发现,Al2O3-TixO复合夹杂物在Ti合金化和二次氧化的情况下都会生成,并随着精炼的进行逐渐转变为Al2O3,这与热力学计算的结果一致;而Al2O3可以作为Al2O3-TixO的形核核心,形成Al2O3-TixO包裹Al2O3的夹杂物,并且在Al2O3-TixO转变为Al2O3的过程中会导致钢滴进入夹杂物内部,从而形成Al2O3包裹钢滴的夹杂物.  相似文献   

18.
以硼泥为原料,硼泥与碳酸钠混合后在900℃下焙烧2h,采用碱浸法回收焙烧后硼泥中的SiO2和B2O3.通过TG-DSC曲线分析了焙烧阶段的反应过程.通过单因素试验研究了碱浸阶段:n(NaOH)/n(SiO2)、反应温度、反应时间、液固质量比等条件对硼泥中的SiO2和B2O3提取率的影响.通过正交试验,确定了影响SiO2提取率各因素之间的主次关系依次为:n(NaOH)/n(SiO2)>液固质量比>反应时间>反应温度,影响B2O3提取率各因素之间的主次关系为:反应时间>反应温度>n(NaOH)/n(SiO2)>液固质量比.最佳的回收条件:n(NaOH)/n(SiO2)为25,反应温度为50℃,反应时间为40min,液固质量比为8,在此条件下SiO2的提取率为83.11%,B2O3的提取率为75.28%.  相似文献   

19.
在富含氧化镁的蛇纹石中添加一种可分解的含氧无机盐,无机盐中金属氧化物与蛇纹石中二氧化硅按1:1摩尔比配方,在600—950℃下煅烧5—8小时.经分离、碳化、热分解,氧化镁提取率达90%以上.  相似文献   

20.
以氢氧化锂、醋酸铬、醋酸锰为原料,用溶胶凝胶辅助高温球磨法合成了尖晶石型LiCr_xMn_(2-x)O_4(x=0.05,0.1,0.2)正极材料.研究了掺杂不同量Cr对材料的相结构、形貌和充放电性能的影响,并与未掺杂的LiMn_2O_4对比.结果表明:掺杂Cr后材料的容量保持率相对LiMn_2O_4有很大提高;材料的放电比容量随着掺杂量的增大逐渐减小,当x=0.2时放电比容量已低于LiMn_2O_4;当x=0.05时,所制备产物的充放电性能最佳,在0.1倍率下,首次放电容量达到119.6 m Ah/g,循环40次后放电容量保持率为97.4%.而且,从0.1到2.0不同倍率下循环100次后放电容量保持率为96.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号