首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
对北京市城区2012年夏季大气气溶胶进行PM2.5和PM10石英膜采样,利用热光反射法得到了有机碳(OC,organic carbon)和元素碳(EC,elemental carbon)的含量;应用Stelson方法,结合其质量浓度、元素含量可溶性离子含量对气溶胶质量浓度进行了质量重建与比对.日平均质量浓度结果显示,PM2.5中,OC浓度ρ(OC)为19.4μg·m-3,EC浓度ρ(EC)为3.8μg·m-3.PM10中,ρ(OC)为22.3μg·m-3,ρ(EC)为4.1μg·m-3.OC、EC相关性显著(PM2.5,R2=0.77;PM10,R2=0.91).PM10中有87%的OC和94%的EC集中在PM2.5中.PM2.5和PM10中OC/EC比值分别为5.1和5.7,明显大于2,说明存在二次有机碳.PM2.5和PM10重建值和称质量值相关性R2分别为0.95和0.94,重建值和称质量值比值分别为93%和97%.  相似文献   

2.
为了解重庆万州区PM2.5中碳质气溶胶的污染特征,于2012—2013年分4个季节采集了 PM2.5样品,并分析了其中有机碳(OC)和元素碳(EC)的浓度。结果显示,在采样期间,万州区 PM2.5中 OC 和 EC 的年平均质量浓度分别为 29.72 μg·m-3和 8.42μg·m-3,OC和 EC浓度之和占到 PM2.5中 27.25%。OC浓度的季节变化趋势由高到低分别为冬季、秋季、春季和夏季,EC在冬季浓度最高,其他季节浓度变化不大。OC和 EC在 4个季节都有较好的相关性(r为 0.67~0.84),其中,冬季相关性最高(r=0.84),秋季相关性(r=0.67)最差,这与污染物来源复杂有关。应用 OC/EC比值法对二次有机碳(SOC)进行估算,SOC年平均浓度为 13.79 μg·m-3,占 OC含量的 46.72%,冬季 SOC的浓度远高于其他季节,冬季较高的 OC排放及较低的大气扩散能力利于碳气溶胶中 SOC 的生成。
  相似文献   

3.
为了解重庆万州区PM2.5中碳质气溶胶的污染特征,于2012—2013年分4个季节采集了PM2.5样品,并分析了其中有机碳(OC)和元素碳(EC)的浓度。结果显示,在采样期间,万州区PM2.5中OC和EC的年平均质量浓度分别为29.72μg·m-3和8.42μg·m-3,OC和EC浓度之和达PM2.5的27.25%。OC浓度的季节变化趋势由高到低分别为冬季、秋季、春季和夏季,EC在冬季浓度最高,其他季节浓度变化不大。OC和EC在4个季节都有较好的相关性(r为0.67~0.84),其中,冬季相关性(r=0.84)最高,秋季相关性(r=0.67)最差,这与污染物来源复杂有关。应用OC/EC比值法对二次有机碳(SOC)进行估算,SOC年平均浓度为13.79μg·m-3,占OC含量的46.72%,冬季SOC的浓度远高于其他季节,冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成。  相似文献   

4.
2003年9月至2004年2月在西安站点开展了大气PM2.5和PM10中碳气溶胶的连续观测,并采集了三类主要污染来源样品(燃煤,机动车尾气和生物质燃烧)进行对比分析,采用IMPROVE-TOR方法准确地测量了样品的有机碳(OC),元素碳(EC)及其中的8个碳组分含量.西安秋季和冬季大气PM2.5中OC的平均含量ρOC分别为(34.1±18.0),(61.9±33.2)μg·m-3,EC的平均含量ρEC为(11.3±6.9),(12.3±5.3)μg·m-3.OC和EC均主要赋存于PM2.5粒级中.秋季OC和EC的相关性好(R2>0.90),冬季一般(R2=0.66).总碳气溶胶在秋季PM2.5中占(48.8±10.1)%,在冬季也达到了(45.9±7.5)%.所有观测日的ρOC/ρEC比值均大于2.0,秋季PM2.5中ρOC/ρEC平均为3.3,冬季为5.1,这可能主要与直接排放来源有关.由碳气溶胶的8个碳组分数据,采用绝对主分量分析获得了主要排放来源对总碳的贡献份额,即秋季汽油车尾气占73%,柴油车尾气占23%,生物质燃烧占4%,而冬季燃煤占了44%,汽油车尾气占44%,生物质燃烧占9%,柴油车占3%.  相似文献   

5.
以重庆市渝北区、南岸区和渝中区3个主要城区为研究对象,采集夏季PM2.5样品,应用DRI Model 2001A热/光分析仪,采用IMPROVE-TOR方法测定了PM2.5中有机碳(OC)和元素碳(EC)含量,并对3地的OC、EC污染特征进行了评价,探讨了PM2.5中含碳物质的来源。结果表明,南岸区OC、EC质量浓度分别为(5.8±1.5)、(2.5±0.8)μg·m-3,低于渝北区((8.9±3.2)、(4.2±1.6)μg·m-3))和渝中区((8.8±2.2)、(4.6±1.3)μg·m-3),与PM2.5质量浓度的分布一致,表明渝北区和渝中区的含碳污染物的排放可能较为严重。渝北区、南岸区和渝中区的OC与EC均显著正相关,表明三大城区OC和EC可能分别具有相似的一次污染源。排除降雨天和O3浓度较高的晴天,利用m(OC)/m(EC)比值法对渝北区、南岸区、渝中区二次有机碳(SOC)进行估算,SOC质量浓度分别为(2.0±1.8)、(1.0±0.7)、(2.3±2.0)μg·m-3,占OC比例均低于30%。渝中区SOC对OC的贡献率最高,这可能是因为该地区易于形成城市热岛效应,且热量和辐射效应更加明显,有助于SOC的生成。通过计算PM2.5中8个碳组分丰度,初步判断机动车尾气排放可能是三大城区碳质组分的主要来源。  相似文献   

6.
南京北郊PM2.5中含碳物质和水溶性离子的污染特性   总被引:2,自引:0,他引:2  
为了解南京市北郊四季细粒子中含碳组分与水溶性离子的污染特征及影响因素,于2012年8月~2013年6月期间在南京北郊采样点采集PM2.5样品。利用DRI Model 2001A热/光碳分析仪对有机碳(OC)与元素碳(EC)进行了测定。结果显示,PM2.5、OC、EC的质量浓度均是冬季最高、夏季最低,PM2.5的日平均值为122.7±75.2μg/m3,OC和EC的日平均值分别为(15.4±8.0)μg/m3和(3.6±1.8)μg/m3,含碳物质占PM2.5总质量的11%~40%。OC与EC在秋季和冬季有较好的相关性(r2分别为0.86和0.83),表明其来源相似;春季和夏季的相关性较低(r2分别为0.47和0.53),可能原因是有较多二次有机碳(SOC)生成致其来源复杂。利用EC示踪法对SOC的含量进行了估算,夏季SOC占OC的比例最高,达到了44.6%,可见高温与强烈的光照有利于SOC的形成。利用戴安离子色谱对PM2.5中的阴离子SO42-、NO3-、F-、Cl-、HCOO-、CH3COO-和C2O42-,阳离子Na+、NH4+、K+、Mg2+、Ca2+进行分析,结果表明,水溶性离子占PM2.5总质量的20%~60%,SO42-、NO3-、NH4+二次离子是南京市郊PM2.5中主要的无机离子。  相似文献   

7.
广州市住宅室内、外PM2. 5 中碳污染来源解析   总被引:1,自引:0,他引:1  
旨在对大气PM2.5中碳污染来源进行解析,以寻求科学合理的预防与污染控制对策.在广州市9个居民住宅的室内、室外同步采集了PM2.5样品,对PM2.5中有机碳(OC)、元素碳(EC)组分采用热光反射分析法(TOR)分析.IMPROVE-TOR法分析OC、EC的过程中,根据固定的温度梯级将OC和EC区分为8个组分(OC1、OC2、OC3、OC4、EC1、EC2、EC3和OPC). 分析了广州市9个采样住宅夏、冬季室内和室外PM2.5中8个碳组分占总碳(TC)的平均丰度及其规律和启示.采用因子分析法对PM2.5中碳污染主要来源的定量贡献进行解析,找出广州市PM2.5中碳污染主要来源及其贡献率.采用简化模型,对室内OC、EC源对室内总碳的相对贡献率,室外OC、EC源对室内总碳的相对贡献率进行了定量化研究.  相似文献   

8.
西安市大气PM_(10)中水溶性有机碳的季节变化及来源分析   总被引:1,自引:0,他引:1  
为了探讨西安市大气可吸入颗粒物(PM10,空气动力学当量直径≤10μm的悬浮颗粒物)中水溶性有机碳(WSOC)的浓度水平与季节变化,从2006年12月至2007年11月,分季节(每个季节选取1个月)采集了西安市大气PM10样品,并采用燃烧氧化-非分散红外吸收法测定了PM10中的水溶性有机碳,采用热-光碳分析仪测定了样品中的有机碳(OC)和元素碳(EC).结果显示,WSOC在春、夏、秋、冬季节的平均质量浓度分别为17.2、14.9、28.3、32.5μg/m3,具有明显的季节变化特征.WSOC占OC的质量比在夏季最高(83.7%)、冬季最低(53.3%).WSOC与OC和EC的相关性分析结果显示:WSOC与EC的相关性微弱,相关系数为0.22;WSOC与OC的相关性很强,相关系数高达0.86.进一步分析显示出WSOC与二次有机碳的相关性达到了0.87,表明西安市大气颗粒物中的WSOC主要是在大气中气-固二次转化形成的.  相似文献   

9.
基于Sunset碳分析仪对上海城区冬季重污染期PM_(2. 5)中的有机碳(OC)和元素碳(EC)浓度展开为期一个月(2014年12月1日~31日)的小时分辨率在线连续监测,并采用优化的最小R2算法对二次有机气溶胶(SOC)含量进行了估算。观测期间的PM_(2. 5)、OC和EC的平均浓度(mean±1σ)分别为(67. 5±40. 5)μg·m~(-3),(9. 9±4. 8)μg·m~(-3),(3. 1±1. 7)μg·m~(-3),其中总碳TC占PM_(2. 5)质量浓度比重为32. 2%。OC/EC的平均值为3. 5,SOC的浓度(2. 4±2. 3)μg·m~(-3),占OC比重为24. 5%。EC浓度的日变化与车流量一致,呈现出显著的早晚高值,表明机动车是上海EC的主要污染源。SOC浓度在午后达到极大值,说明光化学反应是SOC形成的重要过程。对采样期间的一次典型污染事件(15日20:00~16日5:00)进行来源分析发现,来自于生物质燃烧输送和机动车一次排放的贡献较少;而SOC占OC的比重明显高于非污染期间,表明二次成核是雾霾期有机气溶胶污染的关键过程。  相似文献   

10.
大气颗粒物作为济南市大气环境的首要污染物,严重影响了济南市环境空气质量.通过对济南市大气细颗粒物的滤膜采样与碳组分分析,对济南市细颗粒物中的碳质组分进行了研究,结果表明,OC、EC的平均质量浓度为12.1、4.8μg/m~3,占PM_(2.5)质量的12.0%和4.8%.OC为PM_(2.5)中的优势碳组分,春、夏、秋季的含量均在10%以上;春、夏、秋季TC对PM_(2.5)的贡献均达到了15%以上.济南春、夏、秋季PM_(2.5)中OC/EC比值分别为2.4、2.4、2.7,均大于2,说明济南春、夏、秋季都存在不同程度的二次有机污染.济南市春、夏、秋季有机碳中SOC的贡献率分别为14.8%、56.9%、49.6%.夏、秋季气温高,日照时间长的气象条件促进了SOC的形成.SOC质量浓度为4.8μg/m~3,总有机碳中SOC的贡献为40.4%,表明SOC已经成为济南市细颗粒物中的重要贡献源.通过对8个碳组分在PM_(2.5)中的含量分析发现,该采样点春、夏、秋季碳组分组成相似,特征组分均为EC1,说明汽油车尾气是济南市主要的污染源.  相似文献   

11.
南宁市大气颗粒物PM10、PM2.5污染水平   总被引:5,自引:0,他引:5  
为了初步调查南宁市大气中颗粒物PM10、PM2.5的污染水平,于2002年春、夏、秋、冬4季在南宁市的5个典型城市功能区,采集了85个样品.结果表明,南宁市PM10、PM2.5的污染很严重,超标率为82.5%、92.5%,而且对人体健康危害更大的PM2.5占PM10的大部分,约为63.5%,且重污染区PM2.5浓度超过轻污染区近一倍,应引起公众和相关职能部门的高度重视。  相似文献   

12.
兰州市冬季大气颗粒物的污染特征分析   总被引:1,自引:5,他引:1  
利用兰州市冬季大气颗粒物Anderson分级采样器和石英分级采样器的资料,采用改进的三次样条插值方法分离出PM2.5,研究兰州市PM2.5PM10的污染水平、PM2.5占PM10和TSP的比例,并比较兰州市PM2.5和PM10在国内的污染水平.结果表明:兰州市冬季PM2.5和PM10的污染严重,PM2.5在大气颗粒物中的质量浓度相对很高,PM2.5的污染和危害值得重视.  相似文献   

13.
北京市冬季霾天气可吸入颗粒物的矿物学研究   总被引:7,自引:0,他引:7  
应用原样X射线衍射(XRD)、Raman激光微探针(LRM)和X射线荧光光谱(XRF)分析技术, 对2008年北京市冬季霾天气、正常天气和降雪后天气中采集到的可吸入颗粒物(PM10)样品进行物相和元素分析, 并讨论PM10的矿物及元素含量变化特征。霾天气PM10浓度为262.7 μg/m3,之后正常天气的浓度为174.8 μg/m3, 均超过国家二级限定浓度。XRD 物相分析显示霾天气时绿泥石含量高于正常天气, 而石英、伊利石、长石和方解石等矿物的含量均低于正常天气。霾天气时二次颗粒物总含量达到37.9%, 比其后的正常天气的30.6%略高, 二次颗粒物中的氯化铵存在于所有样品中, 其含量从霾天气时的9.6% 降至正常天气时的5.9%, 显示出霾天气对氯化铵等二次颗粒物的生成有促进作用。LRM 在霾天气样品中探测到了覆盖在石英、方解石和硅酸盐颗粒表面的硫酸盐和有机物, 显示出大气PM10已成为重要的污染物载体。XRF定量分析结果与XRD分析结果一致, 显示Al和Si等元素含量在霾天气时明显下降, 而S和Cl则在霾天气颗粒物中大量富集。  相似文献   

14.
O_2/CO_2气氛煤粉粒径对PM_(2.5)形成的影响   总被引:1,自引:0,他引:1  
采用管式炉研究了煤粉粒径对可吸入颗粒物排放特性的影响.试验煤种为徐州烟煤,煤粉粒径分别为135~220 μm,91~135 μm,61~91 μm和0~61 μm;燃烧试验在1 123 K,O2/CO2气氛下进行.试验用荷电低压撞击器(ELPI)采集燃烧后的可吸入颗粒物.结果显示:煤粉粒径是燃烧过程中影响PM2.5 (2.5 μm以下颗粒物)生成的重要因素,粒径越小,生成的PM2.5越多;4种粒径煤粉燃烧后生成的PM2.5粒径分布都是相似的双峰分布,峰值点分别出现在0.2和2.5 μm左右.随着煤粉粒径的减小,S,Na和K几种元素的浓度值增加很大,Ca和Si的浓度值减少很多,而Fe的浓度值变化不大.粒径小于0.317 μm的颗粒可能通过气化-凝结机理形成,超微米颗粒则可能是通过亚微米颗粒凝聚、聚结和矿物质熔融、破碎、聚结形成.  相似文献   

15.
岳江 《太原科技》2010,192(1):59-61
通过计算并分析大同、榆社两地PM10日际平均值、日平均值、月平均值、季平均值,详细解释了不同时间段和时期PM10质量浓度变化的规律和原因,为开展对气溶胶粒子的影响要素分析提供了依据。  相似文献   

16.
本文对延安市环境监测站2005年城区3个监测点PM10监测资料进行了分析,结果发现延安市大气污染物PM10污染严重,并存在明显的空间和季节差异,延安市监测站测点污染最严重,枣园测点污染较轻;冬季污染最重,夏季污染最小。最后结合其他相关资料,对造成上述状况的原因作了探讨,并提出污染防治措施。  相似文献   

17.
采用PM3系列方法对新合成的10个不对称取代方酸内盐进行了系统研究.计算得到它们的优化几何构型、电荷分布、IR谱及UV谱,并对光谱进行了理论确认.考察了组态数对理论UV谱的影响.结果表明它们都具有刚性平面结构:方酸环为缺电子中心:对前线轨道的能量分析说明这10个衍生物的一价负离子可以稳定存在,随着组态数目的增加,理论UV谱与实验结果的误差呈减小趋势.所有的光谱理论值和实验值的误差在10%左右.  相似文献   

18.
北京市大气静稳型重污染的印痕分析   总被引:4,自引:0,他引:4  
2004年10月1-10日,北京出现了一次典型的大气静稳型重污染过程。利用印痕(footprint)分析方法,结合主要污染物PM10的逐时浓度监测数据,对这次静稳型重污染过程及其影响源地进行分析。结果表明: 1 重污染过程中PM10浓度的日变化特征有明显改变,下午和晚上出现高浓度; 2 北京地区PM10浓度的水平分布总体呈“南高北低”形势; 3 重污染发展阶段伴随着印痕分布区域不断朝偏西南方向延伸的过程,延伸区域达100~200 km,反映西南方向源区对这次重污染的明显贡献。  相似文献   

19.
小波变换在大气污染物时间序列分析中的应用   总被引:4,自引:0,他引:4  
以西安市PM10日平均浓度时间序列为例,根据小波分析的基本原理,应用小波变换的时频局部化功能,对大气污染物时间序列的变化进行了分析,清楚地给出了大气污染物的年变化趋势及突变特征。这些特征对大气污染物的治理、预报和控制具有十分重要的实际意义。研究结果表明,将小波变换应用于大气污染物时间序列的分析是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号