首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
为研究混凝土箱梁零号块的水化热温度效应,找到合理的温控措施,基于某大跨度连续梁桥两处零号箱梁浇筑后的实测数据,运用有限元分析软件模拟箱梁浇筑后的水化热温度场,分析了外部温度对水化热温度场的影响,提出了用竖向筋波纹管充当冷却管的温控方案.试验研究表明:混凝土箱梁的温度实测值与计算值符合较好,说明有限元分析模型能有效模拟水化热温度场;水化热产生的顶底板温度梯度与外部温度有关,夏季施工比冬季施工时达到的顶底板温差更大;应变场与温度场呈负相关状态,且应变变化滞后于温度变化,应变先压后拉.因此,零号箱梁的浇筑宜在温度较低时进行,浇筑完成后,应当根据水化热温度效应的特点,对重要部位进行针对性养护,并采用适当温控方案,以降低混凝土内部最高温度及顶底板温度梯度.  相似文献   

2.
通过对某大型混凝土箱梁桥温度场的观测,分析了混凝土箱梁在日照辐射作用下的温度变化情况和竖向温度梯度的分布规律,发现日照辐射作用下混凝土箱梁竖向温度梯度模式近似服从指数分布。建立了基于气象参数的混凝土箱梁日照温度场有限元模型,并验证了该模型的准确性。最后,计算了50年一遇气象参数条件下混凝土箱梁竖向温度梯度分布情况,结果表明,极端条件下混凝土箱梁竖向最大温差可达18.5℃。  相似文献   

3.
目的 研究巨型钢管C70高强混凝土柱水化热温度场,为巨型钢管高强度混凝土柱的混凝土配合比设计、热工计算及施工养护措施制定提供依据。方法 通过试验获得巨型钢管高强度混凝土柱的温度场发展规律并考察混凝土浇筑质量,进而采用有限元软件MIDAS FEA进行温度场数值模拟,研究不同混凝土热工参数下巨型钢管混凝土柱的温度场变化规律。结果 试件温控指标未达到《大体积混凝土施工标准》(GB50496—2018)要求,但混凝土浇筑质量能够满足施工质量要求;考虑内部钢构件的模型温度场计算结果与试验结果吻合较好,理论公式求得混凝土热工参数后,用于温度场模拟得到的结果与试验结果有较大差异。结论 C70高强混凝土的温控指标可适当放宽,且应降低水化反应速率以改善巨型钢管高强混凝土柱内混凝土温度场;进行巨型钢管高强混凝土柱水化热温度场分析时,应考虑其内部钢构件。  相似文献   

4.
单箱三室箱梁温度效应复杂,在王家河特大桥箱梁混凝土内埋置了89个温度传感器、并布置了光电辐射传感器与风速传感器,采集频率均为1次/20min。利用无线采集模块进行数据采集,得到单箱三室箱梁太阳辐射温度场分布规律。研究结果表明:太阳辐射测试结果存在季节性,夏季太阳辐射强烈,风速测试结果无明显季节性;受太阳辐射作用影响,向阳侧边腹板竖向温度梯度大于背阳侧竖向温度梯度,夏季竖向温度梯度大于冬季温度梯度;受对流作用影响,中腹板除顶底部测点外变化极小可被忽略;受太阳高度角影响,冬季向阳侧照射时间比夏季长。冬季箱梁最大横向温度梯度为12.0℃,大于夏季的4.7℃;箱梁横向温度梯度成U型分布,背阳侧横向温度梯度的98%超越概率值为6.472℃,首次提出基于向阳侧和背阳侧温度梯度的中国铁路规范的修正公式;建立考虑遮阴长度的温度场模型,揭示了向阳侧腹板横向温度梯度冬季大于夏季的原因。  相似文献   

5.
钢管混凝土拱桥温度问题研究综述   总被引:5,自引:0,他引:5       下载免费PDF全文
对钢管混凝土拱桥温度问题的研究现状进行了综述.从钢管混凝土拱肋截面温度场分析、核心混凝土水化热计算模型、钢管混凝土拱桥温度应力的计算、温度变化与脱粘关系等方面,分析了现有研究已解决和尚未解决的问题.指出今后的研究应开展温度场的实桥测试分析,综合考虑桥梁所在区域、桥梁结构形式和拱肋截面形式等因素,提出温度场的简化计算方法,同时要研究温度变化与脱粘的关系.  相似文献   

6.
在现场实测温度资料的基础上,分析了某混凝土厚壁箱形墩在日照温差作用下的温度分布,并参照国内外规范及经验公式,用指数函数形式拟合出了最大温差时刻的温度梯度模式,分析结果对研究贵州地区混凝土墩柱结构的温度分布规律及同类型桥梁的设计和施工有一定的参考价值.采用有限元程序ANSYS对箱墩温度场进行了数值模拟分析,其理论计算结果与实测值吻合较好,从而证明了用ANSYS模拟温度场的可行性.该方法同样适用于同类型混凝土结构的温度场模拟.  相似文献   

7.
传统基于热力学的混凝土结构温度场分析方法存在着假设过多、参数取值困难、计算能耗过大的缺点.为研究轨道板竖向温度梯度分布规律,结合轨道板温度场的长期观测数据,建立误差反向传播的多层人工神经网络,选用易于取得的气象参数作为训练样本,对轨道板竖向温度梯度进行预测,并采用实测数据验证其准确性.在此基础上研究了日温差、日照时数和风速对轨道板竖向温度梯度的影响规律.研究表明:采用日温差、日平均风速和日照时数3种气象参数作为训练样本,所建立的4-16-1结构人工神经网络预测结果最大误差为2.0℃,平均相对误差为0.38%,可准确预测轨道板竖向温度梯度,且具有较好的鲁棒性;各气象参数与轨道板竖向温差之间存在着复杂的非线性映射关系,总体而言,日照越强,风速越高,轨道板竖向温度梯度越大;对我国中部地区而言,轨道板竖向温度梯度为-2~10℃.  相似文献   

8.
波形钢腹板PC箱梁桥内衬混凝土部位的材料不同,在日照作用下,混凝土与钢材部位的温度分布也不同,因此有必要对其腹板温度场进行研究.本文依托宁夏叶盛黄河公路大桥,利用无线采集仪模块和温度传感器,首次开展了波形钢腹板内衬混凝土部位的温度梯度研究.通过对内衬混凝土截面32个测点进行分析,得到混凝土及波形钢腹板的温度变化规律.利用最大极值分布对百年一遇的极端气温进行预测.研究表明:波形钢腹板箱梁的混凝土顶板、底板和内衬混凝土的竖向温度梯度可按照桥梁规范取值即可.腹板的波纹钢和混凝土材料性质不同,在升温时,存在不同的温度梯度;由于太阳辐射原因,波形钢腹板向阳侧和背阳侧温度梯度模式存在差异,在16点时,内衬混凝土部位的波纹钢和内衬的温差沿高度分布规律为:向阳侧呈现正弦曲线分布,背阳侧呈现梯形分布.本研究首次提出的波形钢腹板内衬混凝土部位的温度梯度可以为该类桥梁设计提供参考.  相似文献   

9.
为研究大体积筏板基础混凝土水化热过程,防止因温差过大而产生温度裂缝,以洛阳龙门综合交通枢纽大体积筏板基础混凝土结构工程为背景,运用有限元软件Midas FEA建立模型分析了筏板基础内部温度沿基础厚度方向和水平方向的变化规律,对比了有无管冷系统作用下筏板基础水化热温度场分布情况。研究结果表明:筏板基础外表面产生裂缝可能性较大,应采取相应保护措施;管冷系统降温效果明显,对比有无管冷系统作用两种情况,发现在管冷系统作用下,基础内外温差为22.8℃,最大温差降低6.3℃,现场实测最大内外温差为24.1℃,单日最大降温速率为1.3℃,两者全部达到规范要求,养护完成后筏板基础外部未存在明显裂缝,证明通过布设管冷系统,能够有效降低水化热作用的影响,缩小内外温差防止产生温度裂缝,保证了筏板基础的整体性和稳定性。  相似文献   

10.
以一座中承式钢管混凝土拱桥为背景,利用MIDAS有限元软件对拱脚承台的大体积混凝土水化热进行计算分析.通过对主要水化热影响参数的分析,得到了最优水化热施工控制方式,采用全面分层法一次浇筑工艺,有效避免了大体积混凝土施工过程中水化热温度控制不理想、混凝土开裂的风险,缩短了施工周期,提高了经济效益.  相似文献   

11.
钢管混凝土拱计算合龙温度试验研究   总被引:1,自引:0,他引:1  
对钢管混凝土拱肋成型过程混凝土水化热作用下的结构温度场和温度效应进行了连续的试验观测。试验采用单圆管截面的钢管混凝土拱肋进行测试,完成了从空钢管合龙至形成钢管混凝土拱肋的过程。在试验实测数据的基础上论述了钢管混凝土拱肋成型过程中的结构温度场和温度效应变化规律,并讨论了钢管混凝土拱桥计算合龙温度的确定方法。试验及分析结果表明,水化热对拱肋成型后钢管的残余温度应力影响很小,而对混凝土的残余温度应力有较大影响;在确定钢管混凝土拱的计算合龙温度时,可以将管内混凝土浇注后7 d的大气平均温度作为拱肋成型时的结构温度,取水化热结束后的结构残余温度内力作为对应的截面温度内力进行计算。  相似文献   

12.
水化热引起的大体积混凝土墙温度分析   总被引:12,自引:5,他引:12       下载免费PDF全文
根据已提出的考虑混凝土化学反应速度的热传导方程新理论,分析了水化热引起的大体积混凝土墙的温度场,给出了该问题非线性热传导方程的解析迭代公式,研究中,绝热温升采用了基于Arrhenius理论的有效时间的函数,从而导致求解非线性热传导方程,从计算结果得出如下结论:(a)浇筑温度对大体积混凝土墙的最高温升有显著影响,浇筑温度越高,混凝土墙的内外最大温差越大;(b)由于混凝土的导热系数低,墙中心的温度高于其表面温度,这将导致混凝土墙横断面上不同位置在不同时刻具有不同的水化热化学反应速率;(c)水化热化学反应速率随温度升高而加快,从而使混凝土硬化速度加快,初凝和最终凝固时间缩短,因此,在炎热气候条件下宜采用低热水泥。  相似文献   

13.
对于大体积混凝土筏板基础在温度场影响下的应力变化和分布规律,结合具体的实际案例,现场监测得到了混凝土的温度和应力应变变化规律,并与计算得到的数值结果进行了对比,说明了研究结果的可靠性.研究表明大体积混凝土在发生水化热反应的过程中,不同时刻的温度场和应力场变化较大,尽早地进行混凝土开裂防治,能有效解决温度应力引起的表面裂...  相似文献   

14.
火灾下带肋薄壁方钢管混凝土柱温度场的计算   总被引:2,自引:0,他引:2       下载免费PDF全文
考虑了水分对混凝土热工参数的影响,采用有限元法编制了计算火灾下带肋薄壁方钢管混凝土柱截面温度场的程序,计算结果得到了以往实验结果的验证.在此基础上,分析了无保护层和带保护层构件截面温度分布的规律.结果表明:纵向加劲肋的存在加快了截面内的热传导,防火涂料保护层的隔热效果明显优于水泥砂浆.此外,考虑水分影响时截面点的升温比不考虑时滞后,对于升温迟缓的区域,最大温差可达到86℃.  相似文献   

15.
含水管混凝土温度场的改进离散迭代算法   总被引:1,自引:0,他引:1  
为更高效精确地计算含水管的大体积混凝土温度场,提出一种模型以及合理的热流量积分断面.为了更好地发挥高阶单元和常规8节点单元的优势,该模型应用一种能和常规8节点单元相协调的高阶单元模拟水管周围的混凝土,采用常规的8节点单元模拟其余区域混凝土.分析水管周围混凝土的真实温度梯度分布和计算的温度梯度以得到准确的热流量积分断面.工程实例表明,应用该模型,能准确和高效地计算出混凝土的温度场和水管沿程水温的分布.经分析,进口水温和混凝土的绝热温升对积分断面的位置影响不大,但混凝土导温系数对单元内部合理温度梯度所在的区域的影响仍需在后续工作中做进一步研究.  相似文献   

16.
基于对苏通大桥辅助航道桥运营期温度数据的分析以及对不同尺寸箱梁的温度场的仿真计算,研究大尺寸箱梁温度场的分布特点及其影响,提出腹板温度梯度和底板温度梯度的修正方法.研究结果表明:大尺寸混凝土箱梁竖向温度分布特点为腹板温度整体高于梗腋部位温度,而梗腋部位的温度又整体高于底板温度;计算大尺寸混凝土箱梁的温度效应时,由腹板温度和底板温度引起的竖向挠度曲率误差最高可达33.3%.腹板沿壁厚方向最大温度梯度可达9℃,当上部结构上下行分幅布置时,外侧腹板和内侧腹板有不可忽略的横向温差.  相似文献   

17.
随着大体积混凝土在高墩、大跨桥梁中的广泛应用,混凝土的水化热问题已引起桥梁工程人员的高度重视。本文以建设中的成昆铁路扩能改造工程攀枝花金沙江大桥为工程背景,选取主梁0#块为研究对象,针对大体积混凝土的水化热温度场进行了分析研究,计算结果可供类似桥梁的设计与施工参考。  相似文献   

18.
混凝土连续刚构箱梁桥的温度场分析   总被引:1,自引:0,他引:1  
根据某在建混凝土连续刚构箱梁桥的实际尺寸,建立有限元平面模型,模拟广东地区夏季时分桥梁所受到的热辐射、热对流等各种热物理边界条件,计算得出混凝土箱梁桥的瞬态温度场分布。根据以上的计算结果,讨论分析了整个箱梁截面温度场以1 d为周期随时间的分布。分析可知,最高温度大于50℃,位于顶板上表面,整个箱梁截面最大温差可大于20℃;箱梁截面温度最不均匀的时刻出现在午后时分,截面温度在沿高度方向上服从指数函数分布等。这些定量分析对工程设计具有参考价值。  相似文献   

19.
利用RT-1温度计对某坞口底板混凝土施工期温度场进行了原型观测,为全面了解混凝土水化热温度变化规律提供了定量依据.同时应用参数化设计语言APDL对ANSYS进行了二次开发,完成了船坞坞口底板施工期温度场的仿真分析,得出了大体积混凝土施工期温度场的特点及变化规律,并将计算结果与实测结果进行了对比分析.  相似文献   

20.
箱梁大体积混凝土冬季施工水化热效应研究   总被引:1,自引:0,他引:1  
针对连续箱梁0#、1#块大体积混凝土因浇筑时水化热温度应力导致的早期开裂现象,基于遵循能量守恒定律的热传导基本理论,利用有限元软件MidasFEA的水化热分析模块,分析了在墩顶3m厚横隔板内有冷却水管作用时,冬季大体积混凝土箱梁"二次浇筑"的早期水化热温度场和应力场.计算表明,水化热引起第一次浇筑混凝土横隔板的棱角处及接近上下层交界面附近的早期温度应力是不容忽视的.根据研究结论,提出了一些控制水化热温度效应的合理建议,可供同类工程参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号