首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the primary tasks in building a quantum theory of gravity is discovering how to save spatiotemporal phenomena using a theory which, putatively, does not include spacetime. Some have taken this task a step further and argue for the actual emergence of spacetime from a non-spatiotemporal ontology in the low-energy regime. In this paper, it is argued that the account of spacetime emergence presented in Huggett and Wüthrich (2013) and then assumed in Baron (2019), Crowther (2016), Wüthrich (2017), and Wüthrich and Lam (2018) fails to accomplish the task to which it is set. There is a prima facie contradiction between the scale-independent ontology of spacetime in GR and the scale-dependent account of emergence proposed by this literature. One can avoid this contradiction but only at the cost of changing the target of emergence and by endorsing a perspectival theory of ontology – a view I call “ontic-perspectivism”. Though this paper explicitly addresses spacetime emergence, many of the following arguments are applicable to other accounts where objects of ontology, or their properties, are claimed to emerge in the low-energy regime.  相似文献   

2.
3.
We make a first attempt to axiomatically formulate the Montevideo interpretation of quantum mechanics. In this interpretation environmental decoherence is supplemented with loss of coherence due to the use of realistic clocks to measure time to solve the measurement problem. The resulting formulation is framed entirely in terms of quantum objects. Unlike in ordinary quantum mechanics, classical time only plays the role of an unobservable parameter. The formulation eliminates any privileged role of the measurement process giving an objective definition of when an event occurs in a system.  相似文献   

4.
I provide an alternative characterization of a “standard of rotation” in the context of classical spacetime structure that does not refer to any covariant derivative operator.  相似文献   

5.
Much discussion was inspired by the publication of Harvey Brown's book Physical Relativity and the so-called dynamical approach to Special Relativity there advocated. At the center of the debate there is the question about the nature of the relation between spacetime and laws or, more specifically, between spacetime symmetries and the symmetries of laws. Originally, the relation was mainly assumed to be explanatory and the dispute expressed in terms of the arrow of explanation – whether it goes from spacetime (symmetries) to (symmetries of) laws or vice-versa. Not everybody agreed with a setting that involves leaving ontology out. In a recent turn, the relation has been claimed to be analytical or definitional. In this paper I intend to examine critically this claim and propose a way to generally understand the relation between spacetime symmetries and symmetries of laws as deriving from constitutive principles.  相似文献   

6.
David Albert claims that classical electromagnetic theory is not time reversal invariant. He acknowledges that all physics books say that it is, but claims they are “simply wrong” because they rely on an incorrect account of how the time reversal operator acts on magnetic fields. On that account, electric fields are left intact by the operator, but magnetic fields are inverted. Albert sees no reason for the asymmetric treatment, and insists that neither field should be inverted. I argue, to the contrary, that the inversion of magnetic fields makes good sense and is, in fact, forced by elementary geometric considerations. I also suggest a way of thinking about the time reversal invariance of classical electromagnetic theory—one that makes use of the invariant four-dimensional formulation of the theory—that makes no reference to magnetic fields at all. It is my hope that it will be of interest in its own right, Albert aside. It has the advantage that it allows for arbitrary curvature in the background spacetime structure, and is therefore suitable for the framework of general relativity. The only assumption one needs is temporal orientability.  相似文献   

7.
The Wigner–Eckart theorem is central to the application of symmetry principles throughout atomic, molecular, and nuclear physics. Nevertheless, the theorem has a puzzling feature: it is dispensable for solving problems within these domains, since elementary methods suffice. To account for the significance of the theorem, I first contrast it with an elementary approach to calculating matrix elements. Next, I consider three broad strategies for interpreting the theorem: conventionalism, fundamentalism, and conceptualism. I argue that the conventionalist framework is unnecessarily pragmatic, while the fundamentalist framework requires more ontological commitments than necessary. Conceptualism avoids both defects, accounting for the theorem’s significance in terms of how it epistemically restructures the calculation of matrix elements. Specifically, the Wigner–Eckart theorem modularizes and unifies matrix element problems, thereby changing what we need to know to solve them.  相似文献   

8.
This paper proposes a metaphysics for holographic duality. In addition to the AdS/CFT correspondence I also consider the dS/CFT conjecture of duality. Both involve non-perturbative string theory and both are exact dualities. But while the AdS/CFT keeps time at the margins of the story, the dS/CFT conjecture gives to time the “space” it deserves by presenting an interesting holographic model of it. My goals in this paper can be summarized in the following way. First, I argue that the formal structure and physical content of the duality do not support the standard philosophical reading of the relation in terms of grounding. Second, I put forward a philosophical scheme mainly extrapolated from the double aspect monism theory. I read holographic duality in this framework as it seems to fit the mathematical and physical structure of the duality smoothly. Inside this framework I propose a notion of spacetime emergence alternative to those ones commonly debated in the AdS/CFT physics and philosophy circles.  相似文献   

9.
Textbooks present classical particle and field physics as theories of physical systems situated in Newtonian absolute space. This absolute space has an influence on the evolution of physical processes, and can therefore be seen as a physical system itself; it is substantival. It turns out to be possible, however, to interpret the classical theories in another way. According to this rival interpretation, spatiotemporal position is a property of physical systems, and there is no substantival spacetime. The traditional objection that such a relationist view could not cope with the existence of inertial effects and other manifestations of the causal efficacy of spacetime can be answered successfully. According to the new point of view, the spacetime manifold of classical physics is a purely representational device. It represents possible locations of physical objects or events; but these locations are physical properties inherent in the physical objects or events themselves and having no existence independently of them. In relativistic quantum field theory the physical meaning of the spacetime manifold becomes even less tangible. Not only does the manifold lose its status as a substantival container, but also its function as a representation of spacetime properties possessed by physical systems becomes problematic. ‘Space and time’ become ordering parameters in the web of properties of physical systems. They seem to regain their traditional meaning only in the non-relativistic limit in which the classical particle concept becomes approximately applicable.  相似文献   

10.
In this paper, I discuss one form of the idea that spacetime and gravity might ‘emerge’ from quantum theory, i.e. via a holographic duality, and in particular via AdS/CFT duality. I begin by giving a survey of the general notion of duality, as well as its connection to emergence. I then review the AdS/CFT duality and proceed to discuss emergence in this context. We will see that it is difficult to find compelling arguments for the emergence of full quantum gravity from gauge theory via AdS/CFT, i.e. for the boundary theory's being metaphysically more fundamental than the bulk theory.  相似文献   

11.
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie–Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest׳s Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest׳s Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity.  相似文献   

12.
In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a “weak” version and a “strong” version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. Cambridge: MIT Press) has dubbed Maxwellian spacetime. This suggests that there are also two versions of Newtonian gravity in flat spacetime—a “weak” version in Maxwellian spacetime, and a “strong” version in Neo-Newtonian spacetime. I conclude by indicating how these alternative formulations of Newtonian gravity impact the notion of empirical indistinguishability and the debate over scientific realism.  相似文献   

13.
In this paper I outline how the debate concerning the intertheoretic reduction of chemistry reaches a stalemate. One way forward is to switch discussion to the issue of ontological reduction and emergence, so I present a counternomic criterion of emergence that should be acceptable to both sides of the discussion. I then examine the bearing on this debate of the symmetry problem in molecular quantum mechanics, as presented by Woolley and Sutcliffe (1977). I conclude by addressing some objections to emergentist positions: that they posit miraculous violations of physical laws; that emergence is obscure and of doubtful coherence; that causal theories of property identity render emergence, under the counternomic criterion, metaphysically impossible.  相似文献   

14.
f(R) Gravity is the most natural extension of General Relativity within Riemannian Geometry. Due to (inter alia) its potential capacity for a unified treatment of early and late-time cosmic expansion, it has enjoyed recent attention in astrophysics and cosmology. I critically examine three inter-related claims found in the pertinent physics literature, of general interest to the philosopher of science. 1. f(R) Gravity is equivalent to a particular Brans-Dicke Theory. 2. The spacetime geometry underpinning f(R) Gravity has substantial conventional elements. 3. f(R) Gravity is an instance of a theory in which the distinction between matter and spacetime is conventional. Whilst the first claim can be vindicated in precise terms, the remaining two claims, I submit, are unwarranted – at least for the reasons usually adduced. On different grounds, though, the case for conventionalism about spacetime geometry in f(R) Gravity (as well as General Relativity) turns out to be considerably stronger.  相似文献   

15.
This paper aims to provide an explication of the meaning of ‘analysis’ and ‘synthesis’ in Descartes’ writings. In the first part I claim that Descartes’ method is entirely captured by the term ‘analysis’, and that it is a method of theory elaboration that fuses the modern methods of discovery and confirmation in one enterprise. I discuss Descartes’ methodological writings, assess their continuity and coherence, and I address the major shortcoming of previous interpretations of Cartesian methodology. I also discuss the Cartesian method in the context of other conceptions of scientific method of that era and argue that Descartes’ method significantly transforms these conceptions. In the second part I argue that mathematical and natural-philosophical writings exhibit this kind of analysis. To that effect I examine in Descartes’ writings on the method as used in mathematics, and Descartes’ account of the discovery of the nature of the rainbow in the Meteors. Finally, I briefly assess Descartes’ claim regarding the universality of his method.  相似文献   

16.
In modern terms, quantum statistics differs from classical statistics for the indistinguishability of its elementary entities. An historical investigation of the emergence of Bose–Einstein statistics, however, shows that quantum statistics was initially interpreted as a statistics of non-independence, for it extended to gas particles the statistical correlation that was a long-recognized characteristic of light quanta. At the same time, the development of a quantum–statistical theory of the ideal gas was riddled with the question of the statistical significance of the exchange symmetry of a system of equal particles. Indistinguishability combines exchange symmetry and statistical correlation, and relates them to the loss of identity of particles in quantum mechanics. It is instructive, however, not to conflate these properties when analysing the historical emergence of quantum statistics. The statistical correlation of light quanta and the exchange symmetry of gas molecules remained two separate problems even though quantum gas theory and Bose–Einstein statistics were born from gas-radiation analogies in statistical theory.  相似文献   

17.
Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio-temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most approaches to quantum gravity already start with an in-built distinction between structures to which the asymmetry between space and time can be traced back.  相似文献   

18.
Michel Janssen and Harvey Brown have driven a prominent recent debate concerning the direction of an alleged arrow of explanation between Minkowski spacetime and Lorentz invariance of dynamical laws in special relativity. In this article, I critically assess this controversy with the aim of clarifying the explanatory foundations of the theory. First, I show that two assumptions shared by the parties—that the dispute is independent of issues concerning spacetime ontology, and that there is an urgent need for a constructive interpretation of special relativity—are problematic and negatively affect the debate. Second, I argue that the whole discussion relies on a misleading conception of the link between Minkowski spacetime structure and Lorentz invariance, a misconception that in turn sheds more shadows than light on our understanding of the explanatory nature and power of Einstein׳s theory. I state that the arrow connecting Lorentz invariance and Minkowski spacetime is not explanatory and unidirectional, but analytic and bidirectional, and that this analytic arrow grounds the chronogeometric explanations of physical phenomena that special relativity offers.  相似文献   

19.
Advocates of the self-corrective thesis argue that scientific method will refute false theories and find closer approximations to the truth in the long run. I discuss a contemporary interpretation of this thesis in terms of frequentist statistics in the context of the behavioral sciences. First, I identify experimental replications and systematic aggregation of evidence (meta-analysis) as the self-corrective mechanism. Then, I present a computer simulation study of scientific communities that implement this mechanism to argue that frequentist statistics may converge upon a correct estimate or not depending on the social structure of the community that uses it. Based on this study, I argue that methodological explanations of the “replicability crisis” in psychology are limited and propose an alternative explanation in terms of biases. Finally, I conclude suggesting that scientific self-correction should be understood as an interaction effect between inference methods and social structures.  相似文献   

20.
This paper argues that spacetime visualisability is not a necessary condition for the intelligibility of theories in physics. Visualisation can be an important tool for rendering a theory intelligible, but it is by no means a sine qua non. The paper examines the historical transition from classical to quantum physics, and analyses the role of visualisability (Anschaulichkeit) and its relation to intelligibility. On the basis of this historical analysis, an alternative conception of the intelligibility of scientific theories is proposed, based on Heisenberg's reinterpretation of the notion of Anschaulichkeit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号