首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
李福勇 《科技信息》2008,(34):136-136
本文以佛山市顺番一级公路大金山隧道为例,阐述小净距三车道公路隧道中央岩加固技术,通过预应力中空注浆锚杆对中夹岩进行预加固,并采取弱爆破开挖技术,确保了中夹岩的稳定,保证了安全施工。  相似文献   

2.
针对浅埋小净距隧道洞口段施工围岩-边坡地形偏压影响及施工过程中的危险施工步问题,引用强度折减法为依据,建立浅埋偏压小净距隧道的仿真模型计算隧道安全系数,并结合现场监测数据对比分析隧道稳定性,结果表明:隧道开挖会使边坡滑移范围向坡顶和坡脚扩展,滑体在隧道中夹岩处分流,使先行洞以扩张形变为主后行洞以压缩形变为主;先行洞内侧上部、外侧上部开挖及后行洞核心土弧形导坑开挖为围岩扰动相对较大施工步,中夹岩、左洞左拱脚与右洞右拱腰为小净距隧道围岩最危险部位,应针对工程实际偏压情况加强支护措施.上半断面的开挖过程造成的围岩扰动大于下半段面.  相似文献   

3.
针对花岗岩残积土浅埋偏压大跨小净距隧道合理间距与偏压程度的关系问题,引入偏压率P,通过建立洞口段1:7,1:5和1:3共3种边坡坡度的偏压小净距隧道模型;基于FLAC3D软件,研究花岗岩残积土围岩小净距隧道施工工法优化和不同偏压率P对其最小合理间距的影响。研究结果表明:双侧壁导坑法较适合偏压率为1.13的小净距隧道施工,最小合理间距为24 m,中间岩柱是最薄弱部位;岩柱上方地表沉降最大,靠近岩柱两侧隧道支护锚杆轴力最大,在施工过程中塑性变形较严重,进一步验证了数值模拟结果的合理性,因此,在施工时应优先加固岩柱的上岩盘,同时兼顾加固中岩盘和下方岩盘,确保中间岩柱稳定。  相似文献   

4.
以北京东路1#号隧道施工为依托,确立了浅埋软硬交互地层小净距隧道施工开挖技术,提出了岩质围岩和土质围岩采用两种有密切联系但又有区别的开挖方法,小净距隧道中夹岩柱加固措施,在保证施工的连续性的基础上实现了施工的差异性,有效地控制了地表及洞内沉降,保证了施工安全。  相似文献   

5.
以具有浅埋、偏压、近距离不对称重叠于下部既有小净距隧道等特征的雅山连拱隧道为工程背景,借助数值模拟手段,分析偏压近接重叠条件下连拱隧道正洞采用"先深后浅"及"先浅后深"两种开挖工序下的施工力学形态.通过比较两工序中连拱隧道围岩和既有小净距隧道衬砌的变形情况、中隔墙变位和受力情况,可知两开挖工序中,连拱隧道围岩变形基本一致,竖向沉降和水平位移值分别以右侧深埋正洞拱顶和浅埋左侧正洞与中导洞相交处为最大,其值分别达到3.19 mm和1.17 mm;浅埋偏压条件下,中隔墙自浇筑成型即处于小偏心受压,但其初始倾斜变位因正洞的开挖而逐步得到拨正;连拱隧道岩体开挖将导致既有小净距隧道内侧拱肩-拱腰区域衬砌出现朝向开挖区的变形,且"先深后浅"工序较"先浅后深"工序偏大0.01~0.02 mm.  相似文献   

6.
一、前言中夹岩柱的稳定直接关系到小净距隧道修建的成败,而小导管注浆、系统锚杆及水平贯通预应力是应用最为广泛的3种中夹岩加固技术并在实践工程中得到了验证。同样,对于中夹岩柱的加固大多集中在对这几种方法的设计参数、适用范围等技术的  相似文献   

7.
小净距隧道设计荷载的确定   总被引:3,自引:0,他引:3  
为了提高小净距隧道的设计理论水平,分析了小净距隧道的受力情况.塌落拱的高度一般在3~4 m(隧道宽度15 m),小净距隧道中夹岩墙宽度只有5~7 m,在施工过程中,2个隧道的松动圈会出现重叠,使中夹岩墙产生较大的垂直向下位移,从而增加了塌落拱的跨度,中夹岩墙上部的应力相应增加.基于双塌落拱理论,认为小净距隧道松动压力的计算值应在单个隧道宽度与整个隧道开挖宽度相应的松动压力之间取值,根据中夹岩壁下沉的大小,在双塌落拱压力上乘以0.5~0.8的系数,来确定小净距隧道的荷载,建立了深、浅埋小净距隧道荷载模式.将该方法确定荷载与福州国际机场高速公路鹤上隧道(小净距)的监测数值进行对比,两者有较好的吻合.  相似文献   

8.
试验研究了浅埋、偏压、错台条件下的小净距隧道力学性态相似模型,模拟不同的施工顺序(先开挖左洞和先开挖右洞)对隧道围岩及中间岩柱应力和沉降的影响.试验结果表明,在浅埋、偏压尤其是错台条件下,左洞和右洞开挖对中间岩柱的应力和位移均产生较大的影响;右洞先开挖引起整个上覆岩体的地表和深层沉降量比左洞大3%~48%,引起的两线隧道围岩中的应力释放量比左洞大3%~46%.左洞先开挖对隧道安全有利,应先开挖左洞.因此,针对平行的偏压小净距隧道应先开挖浅埋侧隧道的经验方法,对于错台不完全适用.数值分析和现场监测数据有力地验证了模型试验结果的合理性.  相似文献   

9.
为了研究隧道浅埋段岩体位移与应力动态过程,针对小净距隧道浅埋段的工程特点,对某隧道的岩体位移、支护压力进行了监测,在分析了监测结果的基础上,采用数值模拟技术,对小净距隧道浅埋段围岩动态过程进行了仿真分析.其研究结果表明:小净距隧道浅埋段中夹岩柱岩体总是向开挖侧洞室发生形变且同一断面双线间支护压力区别较大,先行洞支护压力较后行洞高  相似文献   

10.
针对浅埋黄土隧道在开挖过程中发生的拱顶过量沉降问题,采用颗粒离散单元法模拟了不同开挖方法和加固措施对围岩稳定和变形的影响,分析了6种工况的围岩压力分布和位移发展情况,讨论了开挖方法和加固措施对隧道围岩稳定的影响.模拟结果显示,隧道拱肩和拱脚应力集中处水平位移较大,拱部和边墙开挖为黄土隧道留核心开挖施工中的关键工序,施工中宜及早支护避免隧道发生过大变形.浅埋黄土隧道拱顶下沉量远大于周边收敛;对于相同的支护形式,留核心土下部全断面开挖法产生的位移总量约为留核心土下半断面分部开挖法的1.2倍;对于相同的开挖方法,无超前注浆支护产生的位移总量约为有超前支护的1.5倍;而有无系统锚杆的隧道围岩变形量基本相同.研究表明,浅埋黄土隧道可采取超前导管注浆减小隧道开挖变形,而系统锚杆由于支护效果不明显可考虑取消.  相似文献   

11.
为研究高地应力软岩隧道超前平行导洞开挖对主洞影响,依托玉龙雪山隧道工程,基于现场长期监测数据,结合有限差分程序FLAC3D建立数值分析模型,研究超前平导对主洞围岩应力、围岩位移和塑性区分布的影响,明确主洞与平导间最优间距。研究结果表明:主洞开挖过程中,当掌子面与监测面距离为3.63倍主洞洞宽时,监测面拱顶沉降、上收敛、中收敛和下收敛值占最终变形值的80%以上,围岩变形稳定后上收敛值和中收敛值均大于拱顶沉降;平导超前开挖可有效改善主洞围岩应力环境,主洞与平导间距较大时,围岩应力改善效果不佳,随着二者间距逐渐减小,围岩应力改善效果逐渐增强,但主洞与平导间距过小时,二者开挖产生的塑性区会贯通,综合考虑,确定主洞与导洞最优间距为3.5倍导洞宽度;主洞拱顶沉降值和拱底隆起值随着主洞与平导间距的减小而增大,左右拱腰水平位移值随着主洞与平导间距的减小先减小后增大,当二者间距由5.0D减小至3.0D时,拱顶沉降值和拱底隆起值分别从-0.598m和0.426m增加至-0.679m和0.514m。  相似文献   

12.
渗流对CRD法开挖浅埋偏压隧道洞口段影响的分析   总被引:1,自引:1,他引:0  
针对在隧道洞口段采用CRD法开挖过程中,因渗流作用而导致围岩的物理力学状态发生变化和引发的问题。在考虑渗流的情况下,运用FLAC3D软件,分析浅埋偏压隧道围岩在CRD法施工时物理力学状态的变化规律。结果表明:在开挖周围产生较集中的漏斗形状的孔隙水压力区域;地形的偏压造成隧洞右侧的应力大于左侧,随着CRD法的分步开挖,每步开挖后造成的导洞在拱顶、底板、边墙处横向均产生了应力集中,左洞在完全开挖与支护后,应力集中现象逐渐减少;在考虑渗流时第三步开挖对初始开挖处围岩变形影响最大;在CRD法开挖过程中,对围岩变形影响较大的是第七步;拱腰和拱顶发生的位移,在考虑渗流时大于未考虑渗流时的情况,但拱底出现与上述相反的现象。  相似文献   

13.
贵阳市地铁1号线望新区间隧道地质环境复杂,位于回填区,地下水丰富,埋深浅。针对此类环境,首次将三台阶七步开挖法引进到地铁区间隧道施工中,通过影响隧道开挖稳定性的关键因素分析及施工方法的数值模拟,结合现场实测,研究了回填土大跨超浅埋地铁隧道开挖稳定性。研究结果表明:超浅埋开挖,回填土地层承载拱难以形成;开挖过程中拱顶、拱脚及仰拱部位产生拉应力,拱腰部位出现应力集中,为压应力区;地表及拱顶沉降变形主要受上台阶导洞开挖的影响,中、下台阶导洞的影响次之,核心土开挖影响较小;核心土及仰拱开挖对拱底围岩变形产生较大影响;因此在开挖过程中要对上述位置进行重点监测,可为今后类似工程提供借鉴。  相似文献   

14.
将小净距隧道中岩柱塑性区不重叠的极限塑性区半径定义为塑性区贯穿半径,考虑中间主应力的影响,采用统一强度准则和Schwarz交替法,对小净距隧道的弹塑性状态进行分析,推导小净距隧道塑性区半径的解析表达式.通过算例,分析中间主应力、内摩擦角和黏聚力对理论解的影响.结果表明:当两隧道净距大于2.3倍的开挖半径时,两隧道之间的相互作用较小,塑性区半径趋于一个稳定值,稳定值比单孔隧道塑性区半径大17.7%,可近似按照单孔隧道进行处理;小净距隧的塑性区贯穿半径随着统一强度参数、内摩擦角和黏聚力的增大而减小;与同不考虑中间主应力作用相比,考虑中间主应力作用的塑性区贯穿半径减小9.19%~20.71%,充分发挥围岩的强度性能.  相似文献   

15.
作为一种大跨径地下结构形式连拱隧道结构复杂,无中导洞法能在提高施工速度的基础上降低中隔墙渗漏水。为研究连拱隧道无中导洞法施工活动对隧道先后行洞的影响程度,以陈家滩隧道为研究对象,通过数值模拟研究了不同间距下先后行洞的影响范围、先后行洞的影响程度以及中隔墙的倾覆趋势。结果表明:当先行洞开挖至控制截面5 m范围内时,对围岩的影响最大,其围岩位移释放系数增量达到了40%以上;超过控制截面10 m时其围岩释放系数达到了93%以上,影响程度较小;超过20 m时影响程度可以忽略。当先后行洞纵向间距大于35 m时,影响程度接近10%,纵向间距大于40 m时,影响程度小于10%。从中隔墙的倾覆程度来看,当先行洞开挖完成时,中隔墙的倾斜程度达到最大,倾斜度约为3.28×10-4;而纵向间距大于30 m时倾斜度差值为0.351×10-4,此时中隔墙倾斜程度较大极差较小,有利于中隔墙受力。故先后行洞开挖掌子面纵向间距建议控制在30~40 m。  相似文献   

16.
通过对正习高速公路隧道浅埋段开挖过程中坍塌冒顶事件进行分析,提出冒顶处治措施,并建立隧道风化残积深度处于拱顶以及拱顶以下1 m的数值模型,进行无超前支护不同开挖步距的变形特征数值试验,试验表明无超前支护情况下即使采用上下台阶法对隧道进行开挖0.6 m,拱顶的围岩变形最大仍达到3.578、4.789 mm,隧道拱顶残积体对隧道开挖后续支护作业产生较大安全风险。在风化残积深度处于拱顶以下1 m时,原设计小导管纵向间距由2.4 m调整为0.6 m后,开挖0.6 m的拱顶最大变形由2.348 mm降低至1.747 mm,结合现场坍塌冒顶事件,为确保后续隧道浅埋土岩复合段落施工安全,提出了冒顶防治措施并在隧道开挖施工中取得良好的效果。  相似文献   

17.
以Hoek-Brown准则为基础,采用FLAC3D数值模拟方法,分别建立不同跨度小净距隧道有限元计算模型,对隧道施工过程力学特征及围岩稳定性进行对比分析.通过分析得出:在施工中应尽量减少对中夹岩的扰动,并采取充分合理的加固措施保证小净距隧道的稳定和支护结构安全;Ⅴ级围岩条件下隧道的净距不能过小,净距在0.2B时的中夹岩受力情况要比0.5B时危险得多,相应的围岩加固也变得艰难,所以对净距的取值一般不能小于0.5B;采用侧壁导坑法开挖隧道,在开挖下侧土体时对中夹岩柱的扰动比较大,施工中应对该阶段加强观测并采取必要的应急措施.  相似文献   

18.
为了确定某小净距隧道适宜的开挖方法,利用有限元软件对全断面法、台阶法和单侧壁导坑法进行模拟,分析不同开挖方法引起的围岩应力云图,并重点对不同的开挖方法引起先行洞围岩及中夹岩柱的受力变化进行对比。结果表明:隧道开挖后在两洞仰拱部位出现拉应力集中区,两隧道之间最近的中夹岩柱是受力最为显著的部位,不同的开挖方法在周边围岩中产生的应力大小及变化趋势也存在差异,全断面开挖方法对先行洞周边围岩影响较小,台阶法的施工在两洞之间引起的应力较小。由此确定该小净距隧道先行洞采用全断面法,后洞采用台阶法进行开挖,通过现场实施,证明方法可行。  相似文献   

19.
由于城市地下空间有限,提供给隧道施工的空间极小,越来越多的浅埋小净距隧道出现在城市中,明确浅埋小净距隧道开挖引发的地表及支护变形规律是保障施工安全的重要前提。以赣州蓉江过江隧道为研究背景,通过现场及室内试验确定注浆前后土层强度参数的变化情况,采用有限差分软件构建对应的数值计算模型,分析浅埋小净距隧道开挖引发的地表沉降及支护变形规律,最后研究不同注浆范围及隧道错开步距的控制效果。研究结果表明:注浆后,土层强度参数提高约40%,抗变形能力提高约130%;隧道开挖后地表沉降由非对称的“V”型分布逐渐转变为对称的“W”型分布,地表最大沉降位置最终出现在后行隧道上方地表;注浆加固能有效控制地表及初期支护变形,提高隧道错开步距对变形的控制效果影响较小,建议现场施工的注浆范围为隧道拱顶至拱顶上方6~8 m范围,先行隧道及后行隧道的错开步距选取为40 m。  相似文献   

20.
地铁暗挖车站因其埋深浅、开挖尺寸大,隧道围岩应力演化剧烈且复杂,塌方事故风险大,隧道支护设计面临极大挑战。为精细化模拟地铁暗挖车站分部开挖及初期支护全过程,以青岛地铁6号线海港路站为对象,建立三维数值模型,结合现场监测数据,研究硬岩地层暗挖大跨隧道施工过程力学特征。结果表明:拱部上导洞开挖造成围岩强度储备显著降低,引起拱顶及地表沉降量占最终值的54%和56%,左、右导洞开挖对应的拱顶围岩应力变化较小,引起拱顶沉降分别占最终值的30%和13%,直墙部等后续施工影响更小,从总体过程来看上导洞开挖对隧道沉降控制最为关键。全部贯通后,拱顶围岩强度储备值高于其他部位,边墙围岩强度储备值接近极限状态,从隧道各部位围岩强度储备角度上看,边墙最为关键需支护。总体上,地铁暗挖车站虽跨度大、埋深浅,但由于硬岩地层围岩强度高而几乎没有产生塑性区,锚喷格栅初期支护即可使隧道达到较高的稳定状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号