首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Dependence on pH of polarized sorting of secreted proteins   总被引:7,自引:0,他引:7  
The plasma membranes of epithelial cells are divided into apical and basolateral domains. These two surfaces are characterized by markedly different protein compositions, reflecting the ability of the cell to target newly synthesized membrane proteins to specific regions of the cell surface. This targeting capability is also apparent in the polarized release of secretory products. Recent studies using canine renal tubule (MDCK) cells have suggested that distinct sets of secretory proteins are released from their apical and basolateral poles. We report experiments designed to examine secretory protein sorting by MDCK cells. We have shown that secretion of basement membrane components (laminin and heparan sulphate proteoglycan (HSPG] takes place from the basolateral cell surface and that this polarized release results from active sorting. The sorting process which mediates this polarized secretion requires an acidic intracellular compartment. MDCK cells treated with NH4Cl to raise the pH of their intracellular compartments, secrete laminin and HSPG by a default pathway which leads to their release in roughly equal quantities into the medium of both the apical and basolateral compartments.  相似文献   

2.
D Brown  S Hirsch  S Gluck 《Nature》1988,331(6157):622-624
Vectorial solute transport by epithelia requires the polarized insertion of transport proteins into apical or basolateral plasmalemmal domains. In the specialized intercalated cells of the kidney collecting duct, the selective placement of an apical plasma membrane proton-pumping ATPase (H+-ATPase) and of a basolateral membrane anion-exchange protein results in transepithelial proton secretion. It is currently believed that amino-acid sequences of membrane proteins contain critical signalling regions involved in sorting these proteins to specific membrane domains. Recently, it was proposed that intercalated cells can reverse their direction of proton secretion under different acid-base conditions by redirecting proton pumps from apical to basolateral membranes, and anion exchangers from basolateral to apical membranes. But others have found that antibodies raised against the red cell anion-exchange protein (Band 3) only labelled intercalated cells at the basolateral plasma membrane, providing evidence against the model of polarity reversal. In this report, we have examined directly the distribution of proton pumps in kidney intercalated cells using specific polyclonal antibodies against subunits of a bovine kidney medullary H+-ATPase. We find that some cortical collecting duct intercalated cells have apical plasma membrane proton pumps, whereas others have basolateral pumps. This is the first direct demonstration of neighbouring epithelial cells maintaining opposite polarities of a transport protein. Thus, either subtle structural differences exist between proton pumps located at opposite poles of the cell, or factors other than protein sequence determine the polarity of H+-ATPase insertion.  相似文献   

3.
Winckler B  Forscher P  Mellman I 《Nature》1999,397(6721):698-701
The asymmetric distribution of proteins to distinct domains in the plasma membrane is crucial to the function of many polarized cells. In epithelia, distinct apical and basolateral surfaces are maintained by tight junctions that prevent diffusion of proteins and lipids between the two domains. Polarized neurons maintain axonal and somatodendritic plasma membrane domains without an obvious physical barrier. Indeed, the artificial lipid Dil encounters no diffusion barrier at the presumptive domain boundary, the axon hillock. By measuring the lateral mobility of membrane proteins using optical tweezers, we show here that some membrane proteins exhibit markedly reduced mobility in the initial segment of the axon. Disruption of F-actin and low levels of dimethyl sulphoxide (DMSO) abolish this diffusion barrier and lead to redistribution of membrane markers that had previously been polarized. Immobilization in the initial segment may reflect, at least in part, differential tethering to cytoskeletal components. Therefore, the ability to maintain a polarized distribution of membrane proteins depends on a specialized domain at the initial segment of the axon, which restricts lateral mobility and serves as a new type of diffusion barrier that acts in the absence of cell-cell contact.  相似文献   

4.
Bilder D  Perrimon N 《Nature》2000,403(6770):676-680
The generation of membrane domains with distinct protein constituents is a hallmark of cell polarization. In epithelia, segregation of membrane proteins into apical and basolateral compartments is critical for cell morphology, tissue physiology and cell signalling. Drosophila proteins that confer apical membrane identity have been found, but the mechanisms that restrict these determinants to the apical cell surface are unknown. Here we show that a laterally localized protein is required for the apical confinement of polarity determinants. Mutations in Drosophila scribble (scrib), which encodes a multi-PDZ (PSD-95, Discs-large and ZO-1) and leucine-rich-repeat protein, cause aberrant cell shapes and loss of the monolayer organization of embryonic epithelia. Scrib is localized to the epithelial septate junction, the analogue of the vertebrate tight junction, at the boundary of the apical and basolateral cell surfaces. Loss of scrib function results in the misdistribution of apical proteins and adherens junctions to the basolateral cell surface, but basolateral protein localization remains intact. These phenotypes can be accounted for by mislocalization of the apical determinant Crumbs. Our results show that the lateral domain of epithelia, particularly the septate junction, functions in restricting apical membrane identity and correctly placing adherens junctions.  相似文献   

5.
Cingulin, a new peripheral component of tight junctions   总被引:42,自引:0,他引:42  
S Citi  H Sabanay  R Jakes  B Geiger  J Kendrick-Jones 《Nature》1988,333(6170):272-276
The tight junction (Zonula occludens), a belt-like region of contact between cells of polarized epithelia, serves as a selective barrier to small molecules and as a total barrier to large molecules, and is involved in the separation between lumenal and basolateral compartments of the epithelium. In the electron microscope, tight junctions show focal regions of apparent fusion between the adjoining cell membranes, and freeze-fractured membranes display an elaborate network of branching and anastomosing strands. Very little is known about the molecular composition and architecture of tight junctions. The first specific zonula occludens-associated protein, designated ZO-1, has recently been identified in mammalian epithelial and endothelial cells. Here we describe the identification and purification of a new component of this junctional complex in avian brush-border cells, which we name cingulin. Cingulin is an acidic, heat-stable protein, with a highly elongated shape. Immunofluorescence and immunoelectron microscopy of brush-border cells with anti-cingulin antibodies show that cingulin is localized in the apical zone of the terminal web, at the endofacial surfaces of the zonula occludens.  相似文献   

6.
T M Rizki  R M Rizki 《Nature》1983,303(5915):340-342
Vertebrate epithelial cells in monolayers are asymmetrical in that their apical and basal membranes differ in morphology and function. That this cell polarity depends on the presence of tight junctions can be demonstrated by labelling one surface of a cell monolayer in culture with fluorescent lectins and lipid probes, and subsequently observing whether the labels disperse to the opposite cell surfaces. Here we report on a differential distribution of binding sites for the lectin wheat germ agglutinin (WGA) on the cells of Drosophila melanogaster larval fat body, and show that the pattern is correlated with the structural association between the cell surfaces and their overlying basement membrane.  相似文献   

7.
Interactions between ligands and receptors are central to communication between cells and tissues. Human airway epithelia constitutively produce both a ligand, the growth factor heregulin, and its receptors--erbB2, erbB3 and erbB4 (refs 1-3). Although heregulin binding initiates cellular proliferation and differentiation, airway epithelia have a low rate of cell division. This raises the question of how ligand-receptor interactions are controlled in epithelia. Here we show that in differentiated human airway epithelia, heregulin-alpha is present exclusively in the apical membrane and the overlying airway surface liquid, physically separated from erbB2-4, which segregate to the basolateral membrane. This physical arrangement creates a ligand-receptor pair poised for activation whenever epithelial integrity is disrupted. Indeed, immediately following a mechanical injury, heregulin-alpha activates erbB2 in cells at the edge of the wound, and this process hastens restoration of epithelial integrity. Likewise, when epithelial cells are not separated into apical and basolateral membranes ('polarized'), or when tight junctions between adjacent cells are opened, heregulin-alpha activates its receptor. This mechanism of ligand-receptor segregation on either side of epithelial tight junctions may be vital for rapid restoration of integrity following injury, and hence critical for survival. This model also suggests a mechanism for abnormal receptor activation in diseases with increased epithelial permeability.  相似文献   

8.
A Bachmann  M Schneider  E Theilenberg  F Grawe  E Knust 《Nature》2001,414(6864):638-643
The polarized architecture of epithelial cells depends on the highly stereotypic distribution of cellular junctions and other membrane-associated protein complexes. In epithelial cells of the Drosophila embryo, three distinct domains subdivide the lateral plasma membrane. The most apical one comprises the subapical complex (SAC). It is followed by the zonula adherens (ZA) and, further basally, by the septate junction. A core component of the SAC is the transmembrane protein Crumbs, the cytoplasmic domain of which recruits the PDZ-protein Discs Lost into the complex. Cells lacking crumbs or the functionally related gene stardust fail to organize a continuous ZA and to maintain cell polarity. Here we show that stardust provides an essential component of the SAC. Stardust proteins colocalize with Crumbs and bind to the carboxy-terminal amino acids of its cytoplasmic tail. We introduce two different Stardust proteins here: one MAGUK protein, characterized by a PDZ domain, an SH3 domain and a guanylate kinase domain; and a second isoform comprising only the guanylate kinase domain. The Stardust proteins represent versatile candidates as structural and possibly regulatory constituents of the SAC, a crucial element in the control of epithelial cell polarity.  相似文献   

9.
Linearly concatenated cyclobutane lipids form a dense bacterial membrane   总被引:21,自引:0,他引:21  
Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings, but four-membered aliphatic cyclobutane rings have never been observed. Here we report the discovery of cyclobutane rings in the dominant membrane lipids of two anaerobic ammonium-oxidizing (anammox) bacteria. These lipids contain up to five linearly fused cyclobutane moieties with cis ring junctions. Such 'ladderane' molecules are unprecedented in nature but are known as promising building blocks in optoelectronics. The ladderane lipids occur in the membrane of the anammoxosome, the dedicated intracytoplasmic compartment where anammox catabolism takes place. They give rise to an exceptionally dense membrane, a tight barrier against diffusion. We propose that such a membrane is required to maintain concentration gradients during the exceptionally slow anammox metabolism and to protect the remainder of the cell from the toxic anammox intermediates. Our results further illustrate that microbial membrane lipid structures are far more diverse than previously recognized.  相似文献   

10.
Cyclic nucleotides may mediate taste transduction   总被引:11,自引:0,他引:11  
K Tonosaki  M Funakoshi 《Nature》1988,331(6154):354-356
Taste stimulus adsorption is believed to occur at the taste cell microvillous membrane. But due to technical difficulties of inserting glass electrodes into the mammalian taste cell, little is known about the mechanisms of taste transduction. Reliable intracellular recordings are necessary to determine the characteristics of taste cells. This has been accomplished previously in the mouse and is reported here. Recent experiments indicated that cyclic nucleotides can act on the inner surface of the membranes of a variety of cells to alter their ion-channel activity, and these substances might act as intracellular transmitters in taste cells. But tight junctions found at the apical membrane of mammalian taste cells do not allow stimuli to enter the taste bud, making it difficult to alter the environment of the taste cell by perfusing with chemical solutions. Here we report that cyclic AMP, cyclic GMP, EGTA or tetraethyl-ammonium electrophoretically injected into the mouse taste cell induce membrane depolarization and increased membrane resistance. These results suggest that a cyclic nucleotide enzymatic cascade, modulated by calcium ions, may mediate the potassium permeability that controls taste, in a way analogous to visual and olfactory transduction.  相似文献   

11.
Wang YC  Khan Z  Kaschube M  Wieschaus EF 《Nature》2012,484(7394):390-393
During tissue morphogenesis, simple epithelial sheets undergo folding to form complex structures. The prevailing model underlying epithelial folding involves cell shape changes driven by myosin-dependent apical constriction. Here we describe an alternative mechanism that requires differential positioning of adherens junctions controlled by modulation of epithelial apical-basal polarity. Using live embryo imaging, we show that before the initiation of dorsal transverse folds during Drosophila gastrulation, adherens junctions shift basally in the initiating cells, but maintain their original subapical positioning in the neighbouring cells. Junctional positioning in the dorsal epithelium depends on the polarity proteins Bazooka and Par-1. In particular, the basal shift that occurs in the initiating cells is associated with a progressive decrease in Par-1 levels. We show that uniform reduction of the activity of Bazooka or Par-1 results in uniform apical or lateral positioning of junctions and in each case dorsal fold initiation is abolished. In addition, an increase in the Bazooka/Par-1 ratio causes formation of ectopic dorsal folds. The basal shift of junctions not only alters the apical shape of the initiating cells, but also forces the lateral membrane of the adjacent cells to bend towards the initiating cells, thereby facilitating tissue deformation. Our data thus establish a direct link between modification of epithelial polarity and initiation of epithelial folding.  相似文献   

12.
Polarization of plasma membrane domains is an essential feature of secretory epithelial cells from exocrine glands. The surface of exocrine cells (a typical example is the acinar cell of the pancreas) is separated into an apical domain, where secretion occurs by exocytosis, and a basolateral domain, which senses variations of the internal milieu and is enriched with receptors for various hormones and secretagogues. It is unknown whether secretion is polarized in endocrine cells (except for thyroid follicular cells, which are organized into cavitary structures). To determine whether distinct plasma membrane domains exist in endocrine cells, we infected monolayer cultures of pancreatic endocrine cells with enveloped RNA viruses known to bud selectively from either the apical or basolateral domain in polarized epithelial cells. This asymmetrical budding is thought to reflect the polarized nature of the infected cells, as in non-polarized cells such as fibroblasts, the same viruses bud nonselectively from the entire cell surface. We show here that influenza virus and vesicular stomatitis virus (VSV) emerge asymmetrically from cultured pancreatic islet cells; this represents the first evidence for polarization of plasma membrane domains in pancreatic endocrine cells.  相似文献   

13.
T Kobayashi  B Storrie  K Simons  C G Dotti 《Nature》1992,359(6396):647-650
In polarized neurons, axons and dendrites perform different functions, which are reflected in their different molecular organization. Studies on the sorting of viral and endogenous glycoproteins in epithelial cells and hippocampal neurons suggest that there may be similarities in the mechanism of sorting in these two cell types. The mechanisms that maintain the distinct composition of the two plasma membrane domains in these two cell types must, however, be different. We have proposed the existence of a functional barrier at the axonal hillock/initial segment which prevents the intermixing of membrane constituents. Here we test this hypothesis by fusing liposomes containing fluorescent phospholipids into the plasma membrane of polarized hippocampal cells in culture. Fusion was induced by lowering the pH and mediated by influenza virus haemagglutinin expressed on the axonal surface of neurons infected with fowl plague virus. Labelling was found exclusively on axons after fusion. Although the fused lipids were mobile on the axonal membrane, no labelling was detected on the cell body and dendritic surfaces. These results suggest that there is a diffusion barrier at the axonal hillock/initial segment which maintains the compositional differences between the axonal and somatodendritic domains.  相似文献   

14.
Clathrin-coated vesicles are vehicles for intracellular trafficking in all nucleated cells, from yeasts to humans. Many studies have demonstrated their essential roles in endocytosis and cellular signalling processes at the plasma membrane. By contrast, very few of their non-endocytic trafficking roles are known, the best characterized being the transport of hydrolases from the Golgi complex to the lysosome. Here we show that clathrin is required for polarity of the basolateral plasma membrane proteins in the epithelial cell line MDCK. Clathrin knockdown depolarized most basolateral proteins, by interfering with their biosynthetic delivery and recycling, but did not affect the polarity of apical proteins. Quantitative live imaging showed that chronic and acute clathrin knockdown selectively slowed down the exit of basolateral proteins from the Golgi complex, and promoted their mis-sorting into apical carrier vesicles. Our results demonstrate a broad requirement for clathrin in basolateral protein trafficking in epithelial cells.  相似文献   

15.
K Dunlap  K Takeda  P Brehm 《Nature》1987,325(6099):60-62
In the hydrozoan coelenterate Obelia geniculata, epithelial cell action potentials trigger light emission from photocyte effector cells containing obelin, an endogenous calcium-activated photoprotein. As this luminescence is blocked by the removal of extracellular calcium it seemed likely that calcium entry via voltage-gated channels in the photocyte membrane would account for the light emission. However, no inward calcium current was detected in whole cell recordings from dissociated photocytes and depolarization of isolated photocytes produced no luminescence. In contrast, a voltage-dependent calcium current was recorded from non-luminescent support cells, and activation of this current triggered luminescence in an adjacent photocyte. Surprisingly, light emission was abolished when the gap junctions between the photocyte and support cell were blocked. We conclude that calcium entry into support cells leads to light emission from neighbouring photocytes via chemical signalling through intercellular gap junctions.  相似文献   

16.
Cell membranes impermeable to NH3   总被引:8,自引:0,他引:8  
D Kikeri  A Sun  M L Zeidel  S C Hebert 《Nature》1989,339(6224):478-480
Classically, there is a direct correlation between the lipophilic nature of a molecule and its rate of permeation across a biological membrane, so cell membranes should be more permeable to small, neutral molecules than they are to charged molecular species of similar size. Consequently, the distribution of NH+4 in biological systems is generally believed to be due to the rapid diffusion and equilibration of lipophilic NH3 across cell membranes and the accumulation of NH+4 to be governed by pH differences between compartments. Here we report that renal tubule cells from the medullary thick ascending limb of Henle have an apical membrane which is not only virtually impermeable to NH3, but is also highly permeable to NH+4. These remarkable properties have been incorporated into a model which explains how this renal epithelium can mediate vectorial movement of NH+4 between compartments of equal pH.  相似文献   

17.
A dragonfly wing consists of membranes and both longitudinal and cross veins. We observed the microstructure cross-section at several locations in the dragonfly wing using environmental scanning electron microscopy (ESEM). The organic nature of the junction between the vein and the membrane was clearly identifiable. The membrane was divided into two layers, the upper epidermis and the lower epidermis. These layers extend around the sandwich structure vein, and combine with the adjacent membrane at a symmetrical location along the vein. Thus, we defined this as an organic junction between the vein and the membranes. The organic junction is able to form a tight corrugation angle, which dramatically increases both the warping rigidity and the strength of the wing, but not the torsional rigidity. The torsional deformation is primarily controlled by the microstructure of the longitudinal veins, and is based on the relative rotation angle between the epidermal layer and the inner layer of the vein that forms the zigzag section.  相似文献   

18.
A S Verkman  W I Lencer  D Brown  D A Ausiello 《Nature》1988,333(6170):268-269
The mechanism by which vasopressin rapidly and dramatically increases the water permeability of target epithelial cell membranes is thought to involve a cycle of exo- and endocytosis during which vesicles carrying 'water channels' are successively inserted into, and removed from the apical plasma membrane of epithelial cells. Clusters of intramembranous particles, visible by freeze-fracture electron microscopy and presumed to represent water channels, appear on apical membranes in parallel with increased transepithelial water flow. In the collecting duct, these clusters are located in clathrin-coated pits which are subsequently internalized. There has been no direct evidence, however, that subcellular membranes in vasopressin-sensitive epithelia contain functional water channels. In this report, we have used fluorophores that are sensitive to volume and do not pass through membranes to label and to measure directly the osmotic water permeability of endocytosed vesicles isolated from renal papilla. We present direct evidence that vasopressin induces the appearance of a population of endocytic vesicles whose limiting membranes contain water channels.  相似文献   

19.
M X Zuber  S M Strittmatter  M C Fishman 《Nature》1989,341(6240):345-348
Neurons and other cells, such as those of epithelia, accumulate particular proteins in spatially discrete domains of the plasma membrane. This enrichment is probably important for localization of function, but it is not clear how it is accomplished. One proposal for epithelial cells is that proteins contain targeting signals which guide preferential accumulation in basal or apical membranes. The growth-cone membrane of a neuron serves as a specialized transduction system, which helps to convert cues from its environment into regulated growth. Because it can be physically separated from the cell soma, it has been possible to show that the growth-cone membrane contains a restricted set of total cellular proteins, although, to our knowledge, no proteins are limited to that structure. One of the most prominent proteins in the growth-cone membrane is GAP-43. Basi et al. have suggested that the N-terminus of GAP-43 might be important for the binding of GAP-43 to the growth-cone membrane. Skene and Virag recently found that the cysteines in the N-terminus are fatty-acylated and that this post-translational modification correlates with membrane-binding ability. We investigated the binding of GAP-43 to the growth-cone membrane by mutational analysis and by laser-scanning confocal microscopy of fusion proteins that included regions of GAP-43 and chloramphenicol acetyltransferase (CAT). We found that a short stretch of the GAP-43 N-terminus suffices to direct accumulation in growth-cone membranes, especially in the filopodia. This supports a previous proposal for the importance of this region of GAP-43 in determining the membrane distribution of GAP-43.  相似文献   

20.
Evidence for fixed charge in the nexus   总被引:4,自引:0,他引:4  
P R Brink  M M Dewey 《Nature》1980,285(5760):101-102
The nexus or gap junction has been characterized as a low-resistance junction as well as a highly permeable junctional membrane to many molecules. The transfer of electrical current from one cell interior to another, the aqueous solubility of dyes used to trace cell to cell communication and the fact that these molecules move across the nexus more rapidly than the plasma membrane have led to the hypothesis of an aqueous channel in the junction. Both Ca2+ (ref.11) and H+ (ref. 12) are thought to alter nexal membrane conductance, and a voltage-sensitive gate has been demonstrated within the junction. Recently, Flagg-Newton et al. have concluded that mammalian junctions may contain fixed charge or be of smaller diameter than arthropod junctions. Here we have investigated these alternatives by examining the permeability of nexuses of septa of the median giant axon of Lumbricus terrestris with various derivatives of fluorescein. Both carboxyfluorescein and aminofluorescein were found to have depressed permeabilities relative to their predicted permeabilities based on molecular size and weight (MW). Flourescein diffusion was significantly suppressed in axons pre-injected with aminofluorescein but carboxyfluorescein had no such effect (Table 1). These data suggest the existence of fixed anionic charge within the nexal channel which may have affinity for amino groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号