首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
星载合成孔径雷达实时快视成像系统   总被引:3,自引:0,他引:3  
给出了一种基于多数字信号处理(DSP)并行处理技术的星载合成孔径雷达(SAR)快视成像系统设计,比较了多种星载SAR成像算法.针对某星载SAR参数提出了优化的实时算法流程,系统实现了对L波段星载SAR距离向1/4降分辨率和方位向四视实时成像处理.通过仿真和实测数据,分析和验证了系统成像结果.  相似文献   

2.
聚束式SAR适用于小场景成像,目前聚束式SAR的成像算法有很多,基于实际系统中实时性的要求,可采用S-RD算法来完成对目标的成像.由于成像区域较小,距离徙动的影响较小,成像算法可分维处理.在距离维,采用去斜技术对回波进行处理,实现脉冲压缩;在方位维,用方位向匹配函数实现方位向聚焦,最后计算该算法的运算量.试验结果表明:该算法步骤简单,运算量小,可被应用于实际系统中完成对目标的实时成像.  相似文献   

3.
去斜滑动聚束模式SAR方位模糊度分析   总被引:2,自引:0,他引:2  
程增菊  宋红军  徐海胜 《科学技术与工程》2011,11(10):2215-2219,2224
方位向模糊度是衡量合成孔径雷达(SAR)成像的重要指标之一,但传统的条带模式和聚束模式的方位模糊度函数并不适用于滑动聚束模式。通过分析方位模糊度的来源及条带模式和聚束模式的方位模糊度函数,对滑动聚束模式进行细分并分析其方位模糊度函数,同时针对星载滑动聚束模式的去频谱混叠条件分析了其方位向模糊度函数的变化。最后采用实际的星载SAR参数进行系统仿真,为SAR系统的设计提供了可靠的理论依据。  相似文献   

4.
传统的合成孔径雷达(SAR)系统一般采用经典的匹配滤波器实现距离维和方位维的二维脉冲压缩变换,其基于匹配滤波器的系统带宽导致系统分辨率是有限且固定的.当对输出信噪比和目标时延分辨率有不同要求时,具有可变指数的指数滤波器可根据具体需求在充分保证输出信噪比的情况下产生高于匹配滤波器的目标分辨率.本文基于指数滤波器将距离维和方位维上的二维指数脉冲压缩变换应用于SAR成像算法,即先后将信号通过距离维和方位维指数滤波器,以实现SAR高分辨率成像.仿真结果表明,该算法在距离维和方位维两个维度都具有比传统SAR算法处理结果更窄的主瓣宽度和更低的旁瓣高度,有效提高了距离维和方位维的分辨率.  相似文献   

5.
针对弹载调频连续波合成孔径雷达FMCW SAR俯冲聚束成像的特点,通过构造全时间距离走动校正函数,完成了距离走动校正;采用谱分析的方法进行方位多普勒解模糊处理,消除方位向频谱混叠;在方位向处理中,提出一种改进的非线性调频变标算法,补偿方位空变相位误差,实现了方位向的精确聚焦.点目标仿真实验验证了理论分析与所提成像方法的有效性.  相似文献   

6.
一种新的星载SAR多普勒调频率的估计方法   总被引:5,自引:2,他引:3  
估计星载合成孔径雷达(SAR)的多普勒调频率,建立星载SAR方位向信号相位的多项式模型,通过差分处理,使调频率的估计变换为频率的估计,采用频率估计方法估计多普勒调频率。通过估计精度和计算量的理论分析,指出该方法在保证一定估计精度的情况下,可以较大地减少计算量,最后利用RADARSAT的数据对算法进行了验证,给出了多普勒调频率的参数估计结果,并利用该参数进行了成像处理,验证了该方法的可行性和有效性,这种多普勒调频率估计方法可以应用于实时成像、快视成像和粗成像。  相似文献   

7.
王宏艳  贾鑫  吴彦鸿 《科技信息》2010,(16):I0096-I0097
论文在研究星载SAR原理和工作过程的基础上,提出了一种星载SAR系统数值仿真模型。模型充分考虑了卫星轨道参数,平台姿态参数,SAR传感器参数,目标特性、位置及运动,实现对星载SAR成像全过程的模拟仿真。并通过计算机仿真验证了模型的正确性。该模型可用于对各种SAR卫星成像能力及其处理的仿真。  相似文献   

8.
本文从合成孔径雷达(SAR)回波信号的特点出发,对SAR回波信号的线性调频特性、频谱特性进行了详细的分析.由于SAR回波信号的线性调频特性,对方位向和距离向的SAR信号进行脉冲压缩,可实现SAR回波数据的成像.本文首先构建了二维线性调频信号,分别通过两个一维傅立叶变换实现对信号的脉冲压缩,并对压缩后的波形进行质量评估,可以得到积分旁瓣比小于-10dB的信号质量.通过这种仿真过程,实现对SAR成像算法的进一步理解.  相似文献   

9.
星载SAR遥感浅海水下地形的最佳海况模拟仿真   总被引:6,自引:0,他引:6  
根据星载合成孔径雷达(SAR)浅海水下地形和水深成像机理,建立了浅海水下地形和水深雷达后向散射截面仿真模型,模拟了浅海水下地形的雷达后向散射截面,分析了流速、流向、风速和风向与SAR水下地形观测之间的关系.结果显示,流经水下地形的流速越大,水下地形越易被SAR观测到.流向与水下地形坡度方向平行(0°)是水下地形观测的最佳流向;流向与水下地形坡度方向垂直(90°)最不利于SAR对水下地形成像.星载SAR水下地形观测的最佳风速范围为3~9 m/s.风向对水下地形成像的影响比较复杂,30°~89°是最佳的风向范围.  相似文献   

10.
雷达(SAR)信号相位的稳定性对于成像处理后图像的方位向分辨率的高低有至关重要的影响.由于飞行平台运动误差或湍流大气中微波传播的影响会直接导致信号相位的波动,机载SAR的方位聚焦一直是SAR成像研究中的重要内容.这里介绍一种基于相位梯度自动聚焦矫正信号相位的高分辨率机载SAR成像处理方法,利用这种方法,对真实的机载SAR信号实验数据进行成像处理.试验表明:在缺乏机载平台运动补偿系统提供飞机运动状况信息的情况下,该成像方法能够有效地估计和补偿相位误差,从而可获得方位向分辨率明显提高的机载SAR图像.  相似文献   

11.
将频率Scaling算法(FSA)引入到聚束式星载合成孔径雷达(SAR)成像应用中,提出了直接对距离向线性调频信号进行频率Scaling操作来完成距离向聚焦的方法,并采用方位压缩的办法来解决方位向脉冲重复频率(PRF)过高的问题.点阵目标实验仿真结果证明了该算法的可行性和有效性.  相似文献   

12.
针对目前在轨星载合成孔径雷达(synthetic aperture radar,SAR)船舶检测主要基于地面处理平台,无法满足星上实时任务规划发展需求的问题,基于现场可编程门阵列(field programmable gate array,FPGA)处理架构,设计了一套用于星上实时处理系统的SAR船舶目标检测算法.结合星载SAR对海观测典型参数指标,在现有处理平台架构上优化所设计算法,最终形成可用于星载SAR船舶目标实时处理系统的检测算法.通过高分三号的59幅SAR图像数据详尽的验证所设计算法的性能.测试结果表明,算法满足系统的可行性和时效性需求.  相似文献   

13.
聚束模式是合成孔径雷达常用的工作模式,聚束模式的精度高,在军事上发挥着很大的作用。滑动聚束模式是一种新兴的工作模式,它有着比条带模式分辨率高,比聚束模式成像区域大的优点,因此受到广泛的利用和研究,文章在此基础上,根据合成孔径雷达的特点,展开了对合成孔径雷达的侦察研究,并比较分析了星载合成孔径雷达工作模式的侦察,仿真实验验证了可行性。  相似文献   

14.
 为了满足对海洋监视日益增长的需求,星载合成孔径雷达(SAR)系统应具备高分辨率宽测绘带能力。高分宽幅星载SAR系统不仅能够获得海洋的环境参数(如洋流、内波、风场、海浪等),还能够获得海面上各种目标(如舰船、溢油、海冰等)的信息,为国民经济建设和国防建设提供信息来源。本文讨论了星载SAR系统在海洋监视中的应用,论述了用于海洋监视的星载SAR系统关键技术,总结了未来海洋监视星载SAR的发展方向。  相似文献   

15.
基于低复杂度卷积神经网络的星载SAR舰船检测   总被引:1,自引:0,他引:1  
星载SAR(合成孔径雷达)舰船检测广泛应用于海上救援和国土安全防护等领域.鉴于传统的检测方法仍存在虚警率高等缺点,本文将具有强大表征能力的卷积神经网络(CNN)引入到星载SAR舰船检测中,面向SAR舰船检测的精准快速的需求,提出了基于低复杂度CNN的星载SAR舰船检测算法.算法结合星载SAR图像的特点,利用ROI提取方法实现目标粗提取,得到可疑目标切片及其对应的位置信息;通过构建的低复杂度CNN对所有的可疑目标切片进行精确分类,确定舰船目标,从而实现舰船目标检测.实验测试结果表明:本文提出的算法可以实现精准的星载SAR舰船检测;与传统双参数CFAR目标检测和基于现有深度网络框架(LeNet、GoogLeNet)的检测算法相比,该算法检测性能更好、检测时间更短,可有效降低检测漏检率和虚警率.  相似文献   

16.
合成孔径雷达定点CS算法量化噪声分析   总被引:1,自引:0,他引:1  
为了实现星载合成孔径雷达(synthetic apertureradar,SAR)成像处理器小型化和实时信号处理,该文重点研究定点运算和有限字长存储引入的量化噪声。根据chirpscaling (CS)成像算法,建立了CS算法定点运算的量化误差模型,分析了处理流程中的量化噪声,推导了系统输出噪信比与系统字长、FFT长度等参数之间的关系。采用不同系统字长对Radarsat-I数据成像,图像质量分析与所述理论一致,结果表明:通过计算处理流程的噪信比,可实现定点SAR成像处理器系统字长等关键参数的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号