首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
热作模具钢连轧过程力学参数的有限元分析   总被引:3,自引:0,他引:3  
采用三维热力耦合弹塑性有限元软件及其接触分析技术,在准确制定相关边界条件基础上对Φ200mm规格的热作模具钢二机架热连轧过程的金属三维流动进行了有限元模拟,准确地计算了力学参数(如轧制力和力矩)的分布情况并对轧辊强度进行了分析,从中确定了安全可行的轧制方案。  相似文献   

2.
借助Marc商用软件,采用二维弹塑性大变形热力耦合有限元法,对薄板坯CSP第一道次热轧过程的温度场进行模拟,分析了轧制过程中轧件温度场的分布和变化规律.结果表明:在轧件变形过程中,接触热传导和变形热是影响温度变化的主要因素,二者的综合作用决定了轧件的温度变化规律;轧制结束后,轧件从表面到心部在一定厚度范围内出现明显的温度梯度,超过该临界厚度值,轧件温度基本保持不变.分析结果可以为工业生产提供参考.  相似文献   

3.
冷连轧过程控制变形抗力模型的自适应学习   总被引:4,自引:0,他引:4  
以考虑冷连轧带钢轧制过程变形区金属塑性变形以及入口、出口弹性变形的变形抗力模型和Bland Ford Hill轧制力模型为基础,将实测轧制力值代入轧制力计算模型建立起以变形抗力后计算值为未知量的非线性方程,求解该方程可以得到变形抗力后计算值,进而通过指数平滑法计算出变形抗力模型中的自适应学习系数·实际应用表明,由该方法得到的变形抗力后计算值的精度和稳定性能满足模型在线控制要求,可以提高在线控制变形抗力模型和轧制力模型的计算精度·  相似文献   

4.
连轧管机的自激振动分析   总被引:1,自引:0,他引:1  
无缝钢管的轧制变形区作为轧制过程的工作界面,其动力学特性对连轧管机的轧制振动有决定性影响.分析了动态情况下轧制界面上的界面摩擦、轧制变形规律、轧辊运动等行为机理及其耦合特性,建立了轧制界面的动力学模型,通过模型研究轧制工艺参数与轧制力能参数的关系,分析了连轧管机的自激振动发生的原因,并用数值模拟方法分析了在不同轧制条件下的轧制变形区的工艺参数与连轧管机的自激振动关系,为解释连轧管机的自激振动机理提供理论基础.  相似文献   

5.
在三机架可逆连轧实验机组上,采用铅试件和钢试件,对H型钢的万能连轧过程进行了综合模拟实验研究,探讨了轧辊线速度差对机座间的张力,连轧张力对腹板前滑,翼缘宽展,轧制力,轧制力矩的影响规律,发现了一些钢试件连轧与铅试件连轧不同的特性,得到了一系列的连轧过程工艺资料,并给出了张力回归公式,对H型钢的连轧工艺参数设计,自动控制系统轧制数学模型的建立具有重要的参考价值。  相似文献   

6.
铜/铝双金属复合管连轧变形过程数值模拟   总被引:1,自引:0,他引:1  
何亚龙 《甘肃科技》2015,31(3):42-45
本文以铜/铝双金属管的轧制复合为例,对双金属管的连轧变形过程进行数值模拟。铜铝双金属管中铜管为覆层,铝管为基层,轧制工艺采用冷轧复合工艺。轧机采用三辊Y型轧机,结合金属塑性变形理论、管棒材连轧技术、张力减径理论、固体传热模型、刚塑性有限元理论,利用大型非线性显式动力学有限元模拟软件ANSYS/LSDYNA对双金属管的轧制过程进行热力耦合数值模拟分析,对双金属管在轧制复合过程中的塑性变形过程、力学性能、尺寸精度和温度变化分布做了分析研究。  相似文献   

7.
热连轧圆钢成品孔型的有限元分析   总被引:3,自引:0,他引:3  
根据Φ16 mm圆钢的轧制规程,运用有限元分析软件ANSYS中的LS-DYNA大变形弹塑性显式分析动力学模块,对终轧机架在分别采用双半径圆弧和切线扩张角两种成品孔型条件下的热连轧过程进行有限元模拟.对比分析了同一轧件在不同孔型中的金属流动特性和应力应变分布规律. 结果表明,有限元模拟结果与实际生产过程相吻合;对同样采用30°扩张角的两种孔型而言,轧件在双半径圆弧成品孔型中的表面受力和总体应变分布更为均匀;轧件在成品孔型的圆弧扩张部位受到的应力较大,使轧辊轧槽表面磨损不均;采用材质硬度更高的成品轧辊,可以降低轧槽表面的磨损程度,延长轧辊孔型的使用寿命,节约生产成本.  相似文献   

8.
使用有限元法模拟钢管在曼内斯曼式穿轧机上的穿孔过程,建立了三维有限元模型。仿真设计采用静力隐式算法,结合Kumar本构模型对实心坯二辊斜轧穿孔过程进行热力耦合有限元模拟分析。通过对工件应变、轧制力和温度变化规律的分析,得出导致工件轧制力和温度上下波动的主要原因。  相似文献   

9.
全浮动芯棒连轧管过程三维热力耦合有限元模拟   总被引:1,自引:0,他引:1  
应用三维热力耦合弹塑性有限元模拟仿真及其接触分析技术,建立了全浮动芯棒连轧管过程有限元模型及其摩擦、传热和接触等重要边界条件.针对八机架椭圆-圆型孔系全浮动芯棒连轧管过程,实现了全三维热力耦合弹塑性有限元模拟仿真.获得了连轧管过程的应力场、应变场、温度场及轧制力学参数的变化特点.揭示了钢管连轧过程中浮动芯棒速度变化及荒管外径和壁厚分布变化的规律.  相似文献   

10.
板料轧制形变累积有利于细化晶粒组织,而多道次轧制能增大轧制板料的等效应变与等效应力,实现细化晶粒的目的.以低碳低合金钢AISI-4140板料为研究对象,应用数值模拟软件,仿真轧制过程.通过板料厚度t=4mm轧制为2mm;厚度t=4mm轧制为3mm,再进一步轧制为2mm.对比分析板料的等效应变、等效应力分布,表明在同样变形量条件下,多道次轧制比一道次变形应力大,细化微观组织作用也大.另外,轧制跟踪点的等效应变与应力值在靠近上、下轧辊比中间区域数值大,该区域的晶粒细化明显.  相似文献   

11.
采用二维弹塑性大变形热力耦合有限元法(FEM),对半连续铸造AZ31镁合金热轧开坯过程第一道次进行模拟,分析变形区内轧件的应力场、应变场的分布及整个热轧过程中的温度场的变化规律.实验结果表明:在轧件变形区内,等效应力沿轧制方向逐渐增大,在中性面附近达到最大值54.1 MPa,随后又逐渐减小;靠近轧件表层σ_x为压应力,靠近心部为拉应力,在变形区σ_y主要为压应力,由表面到中心σ_y逐渐减小;等效应变沿轧制方向逐渐增大,在轧件出口处达到最大值0.253;在整个轧制过程中,轧件内部节点的温度变化缓慢,而表面节点的温度变化剧烈,轧制完成后,表面温度从500℃降低到467℃,中部温度从500℃升高到503.1℃,心部温度从500℃升高到502.2℃.  相似文献   

12.
棒材切分轧制过程中三维弹塑性有限元模拟   总被引:1,自引:0,他引:1  
采用三维弹塑性有限元法对棒钢三线切分轧制过程的金属变形区进行了模拟。通过建立数学模型和计算,对切分轧件的变形特征、应力与应变进行了分析,提出了预切孔金属流动变形的稳定性问题。如果预切孔内轧件的变形过大,切分楔附近的金属网格发生了很大的扭曲畸变,造成变形不均匀和金属的流动不稳定。根据模拟分析的结果,设计了直径为Φ12mm带肋钢筋的三线切分孔型系统,轧制生产实验结果表明:采用优化的新切分孔型系统进行生产,提高了轧机的生产率,改善了产品质量。  相似文献   

13.
结合生产实际,采用ABAQUS显式动力仿真平台,对宝钢140mm全浮动芯棒钢管连轧过程中金属的变形及流动规律进行了仿真分析.分析结果表明:金属的横向流动主要表现为从孔顶区域流向侧壁区域;金属的纵向延伸主要发生在孔顶区域,且钢管外壁金属相对内壁金属向前滑移.孔型侧壁区域金属的横向堆积及纵向延展不充分是导致荒管壁厚不均的主要原因.  相似文献   

14.
厚板轧制头部弯曲的有限元分析   总被引:1,自引:0,他引:1  
采用二维大变形热-力耦合有限元法分析了厚板轧制头部弯曲的现象,得到了不同的轧制线高度、摩擦状况、上下工作辊直径和上下工作辊转速时对厚板轧后头部弯曲的影响。结果表明,在其他条件相同的情况下,合适的轧制线高度范围是22-33 mm;采用下压法轧制时,合适的下工作辊直径与上工作辊直径差范围是0-20 mm。该结果可为厚板轧制过程参数的设定提供参考。  相似文献   

15.
采用三维流函数法 ,对棒材热连轧时的椭圆 -圆孔型系统进行了力能参数的解析 ,其结果与实测符合的很好。该法也可以用于高速线材椭圆 -圆孔型轧制力的计算。  相似文献   

16.
采用显示动力学有限元软件LS-DYNA,结合生产实际,对H型钢万能轧制进行了仿真计算.在仿真结果的基础上,根据轧制平面内的节点位移矢量分布情况,分析了轧件断面内金属流动规律.仿真结果显示轧件断面内在立辊和平辊压下方向上存在"零位移线",说明在H型钢万能轧制过程中,在立辊和平辊压下方向上轧件内金属流动存在"位移中性面",并伴有翼缘端部金属流动产生"内翻"的情况.  相似文献   

17.
针对矿车车箱受力复杂,钢板厚度仅凭经验确定的情况,在受力分析基础上,应用AN-SYS有限元软件,建立1 t固定式矿车车箱数值模型,并分析机车牵引制动碰撞时受力最大车箱的应力及变形情况。结果表明:4、4.5 mm壁厚车箱均能够满足强度和刚度要求;设置加强筋后,4 mm壁厚车箱刚度明显提高;在提高车箱材料的耐磨性和耐蚀性前提下,可以通过减薄壁厚实现车箱轻量化。该研究给出了一种新的矿车车箱受力变形分析方法,为新材料矿车车箱的研制提供了有益参考。  相似文献   

18.
工作辊辊形对铝箔板形影响的有限元分析   总被引:2,自引:0,他引:2  
将铝箔轧机辊系及轧件统一考虑建立了有限元分析模型,分别计算了在冷辊(开始轧制)和热辊(稳定轧制)状态下,不同工作辊辊形的辊缝及轧制压力的轴向分布,分析了工作辊辊形对铝箔板形的影响.建议铝箔轧制时上工作辊采用AFW辊形,下工作辊采用平辊的工艺制度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号