首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Widespread horizontal transfer of mitochondrial genes in flowering plants   总被引:1,自引:0,他引:1  
Bergthorsson U  Adams KL  Thomason B  Palmer JD 《Nature》2003,424(6945):197-201
Horizontal gene transfer--the exchange of genes across mating barriers--is recognized as a major force in bacterial evolution. However, in eukaryotes it is prevalent only in certain phagotrophic protists and limited largely to the ancient acquisition of bacterial genes. Although the human genome was initially reported to contain over 100 genes acquired during vertebrate evolution from bacteria, this claim was immediately and repeatedly rebutted. Moreover, horizontal transfer is unknown within the evolution of animals, plants and fungi except in the special context of mobile genetic elements. Here we show, however, that standard mitochondrial genes, encoding ribosomal and respiratory proteins, are subject to evolutionarily frequent horizontal transfer between distantly related flowering plants. These transfers have created a variety of genomic outcomes, including gene duplication, recapture of genes lost through transfer to the nucleus, and chimaeric, half-monocot, half-dicot genes. These results imply the existence of mechanisms for the delivery of DNA between unrelated plants, indicate that horizontal transfer is also a force in plant nuclear genomes, and are discussed in the contexts of plant molecular phylogeny and genetically modified plants.  相似文献   

2.
3.
Gene transfer to plants by diverse species of bacteria   总被引:2,自引:0,他引:2  
Agrobacterium is widely considered to be the only bacterial genus capable of transferring genes to plants. When suitably modified, Agrobacterium has become the most effective vector for gene transfer in plant biotechnology. However, the complexity of the patent landscape has created both real and perceived obstacles to the effective use of this technology for agricultural improvements by many public and private organizations worldwide. Here we show that several species of bacteria outside the Agrobacterium genus can be modified to mediate gene transfer to a number of diverse plants. These plant-associated symbiotic bacteria were made competent for gene transfer by acquisition of both a disarmed Ti plasmid and a suitable binary vector. This alternative to Agrobacterium-mediated technology for crop improvement, in addition to affording a versatile 'open source' platform for plant biotechnology, may lead to new uses of natural bacteria-plant interactions to achieve plant transformation.  相似文献   

4.
Flowering involves a transition process from vegetative growth to reproductive development, in which a series of routine changes take place in the shoot apical meristems from metabolic pathway to external phenotype. Expression of the genes related to flowering is the foundation for achieving the transition. Environmental factors (such as vernalization and photoperiod) and the growth status of cell itself induce the expression of the specific genes. A lot of achievements have been made recently in gene control for the determination of flowering time. The article reviews some new advances of such researches related to our work and the interesting field.  相似文献   

5.
6.
延迟自交是植物在单朵花开花末期主动自花授粉的一种繁殖方式。为了补充及完善植物进化和传粉生物学研究的综合数据资料,笔者概述了延迟自交的发生途径、试验研究方法、“两全其美”繁殖保障假说等方面的进展,探讨了其适应性意义,并对今后的研究方向提出了建议。目前,延迟自交现象广泛发生在43科61属74种植物中,其中,52种植物的发生途径是单一的,22种植物由两种途径共同作用。在单一途径中,柱头弯曲引起的延迟自交最为常见;不完全雌雄异熟和雌雄异位减小两种途径共同作用促进的延迟自交最为常见。对延迟自交的观察,多采用宏观传粉生物学手段,少有研究将宏观传粉生物学与遗传学手段相结合为延迟自交的发生提供最严谨的证据。延迟自交的繁殖保障假说表明,植物在优先保障异交进行的前提下,当传粉环境不可预测时,延迟自交能为植物的繁殖成功提供保障,被认为是结合了自交和异交优点的“两全其美”的交配系统。此外,对于少胚珠物种,昆虫单次授粉后即可充分授粉;为节约植物资源,还可阻止延迟自交的发生。  相似文献   

7.
家庭养花在污染防治中的作用   总被引:7,自引:0,他引:7  
马艳丽 《长春大学学报》2003,13(6):27-29,45
阐述了花卉在削弱室内空气污染,提高空气质量方面的作用:吸收有毒气体、二氧化硫(SO2)、氟化氢(HF)、氯气(Cl2)等;分泌杀菌素,减少空气含菌量;减少空气中放射性物质含量及辐射危害;监测空气污染。同时文中对具有空气净化能力的家庭常见花卉也进行了较详细的分类总结。  相似文献   

8.
Evolutionary transfer of the chloroplast tufA gene to the nucleus   总被引:23,自引:0,他引:23  
S L Baldauf  J D Palmer 《Nature》1990,344(6263):262-265
Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, which proposes that mitochondria and chloroplasts originated from once free-living eubacteria. The small organellar chromosomes are remnants of larger bacterial genomes, with most endosymbiont genes having been either transferred to the nucleus soon after endosymbiosis or lost entirely, with some being functionally replaced by pre-existing nuclear genes. Several lines of evidence indicate that relocation of some organelle genes could have been more recent. These include the abundance of non-functional organelle sequences of recent origin in nuclear DNA, successful artificial transfer of functional organelle genes to the nucleus, and several examples of recently lost organelle genes, although none of these is known to have been replaced by a nuclear homologue that is clearly of organellar ancestry. We present gene sequence and molecular phylogenetic evidence for the transfer of the chloroplast tufA gene to the nucleus in the green algal ancestor of land plants.  相似文献   

9.
The independent evolution of morphological similarities is widespread. For simple traits, such as overall body colour, repeated transitions by means of mutations in the same gene may be common. However, for more complex traits, the possible genetic paths may be more numerous; the molecular mechanisms underlying their independent origins and the extent to which they are constrained to follow certain genetic paths are largely unknown. Here we show that a male wing pigmentation pattern involved in courtship display has been gained and lost multiple times in a Drosophila clade. Each of the cases we have analysed (two gains and two losses) involved regulatory changes at the pleiotropic pigmentation gene yellow. Losses involved the parallel inactivation of the same cis-regulatory element (CRE), with changes at a few nucleotides sufficient to account for the functional divergence of one element between two sibling species. Surprisingly, two independent gains of wing spots resulted from the co-option of distinct ancestral CREs. These results demonstrate how the functional diversification of the modular CREs of pleiotropic genes contributes to evolutionary novelty and the independent evolution of morphological similarities.  相似文献   

10.
11.
H Murakami  G Blobel  D Pain 《Nature》1990,347(6292):488-491
We have previously identified an integral membrane protein (p32) from Saccharomyces cerevisiae as a receptor for protein import into mitochondria, and have localized it to the mitochondrial outer membrane at contact sites. Here we report isolation of the corresponding mitochondrial import receptor gene, termed MIR1. The deduced amino-acid sequence of p32 shows roughly 40% identity with proteins of bovine heart and rat liver that have been suggested to be mitochondrial phosphate carriers. Haploid cells carrying a disrupted MIR1 allele were unable to grow on a non-fermentable carbon source but grew in media containing glucose, indicating that the MIR1 protein is essential for mitochondrial function. Compared with wild type, amounts of some mitochondrial proteins were markedly reduced in cells containing a disrupted MIR1 allele, whereas levels of others were unchanged. This indicates that yeast contains more than one pathway for protein import into mitochondria.  相似文献   

12.
Julian M Hibberd  W Paul Quick 《Nature》2002,415(6870):451-454
Most plants are known as C3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical characteristics of C4 photosynthesis evolved first. Here we report that tobacco, a typical C3 plant, shows characteristics of C4 photosynthesis in cells of stems and petioles that surround the xylem and phloem, and that these cells are supplied with carbon for photosynthesis from the vascular system and not from stomata. These photosynthetic cells possess high activities of enzymes characteristic of C4 photosynthesis, which allow the decarboxylation of four-carbon organic acids from the xylem and phloem, thus releasing CO2 for photosynthesis. These biochemical characteristics of C4 photosynthesis in cells around the vascular bundles of stems of C3 plants might explain why C4 photosynthesis has evolved independently many times.  相似文献   

13.
针对南京地区早春主要开花植物,于2013年3月5日至5月15日,采用捕捉、鉴定、视频、图像采集等方法,对访花昆虫的种类、访花行为、访花频率和日活动规律进行了观察研究。结果表明:南京地区主要开花植物的访花昆虫有7目20科32种,主要类群为双翅目、鳞翅目、膜翅目,其中东方蜜蜂、黄胸木蜂、长木蜂、赤足木蜂、黑颚条蜂、食蚜蝇以及菜粉蝶为主要访花昆虫。它们的弹花频率、每小花停留时间等访花行为受到花色、花的味道、花的结构以及访花昆虫自身结构的影响而表现出不同的特点。  相似文献   

14.
MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloro- plast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demon- strated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred be- fore the evolution of land plants.  相似文献   

15.
Mutations in the p53 gene occur in diverse human tumour types   总被引:196,自引:0,他引:196  
The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.  相似文献   

16.
R M Wright  D J Cummings 《Nature》1983,302(5903):86-88
Cellular senescence in the ascomycete fungus Podospora anserina is associated with the appearance of an altered mitochondrial genome. Discrete mitochondrial DNA sequences are excised and amplified and isolated as multimerically arranged, head-to-tail repetitions. We have referred to the most frequently observed excision/amplification product as alpha-event senDNA. It is a 2.6-kilobase pair (kbp) monomeric unit (see refs 1, 3, 7) and is often found in senescent mitochondria in conjunction with other excision products. At the final stage of senescence these plasmids constitute virtually all of the DNA present in senescent mitochondria; they have replicated to high copy number at the expense of the young native genome. Because P. anserina is characterized by race-specific timing of senescence (that is, a programme of senescence), we have begun to contrast rapidly and slowly senescing races in terms of senDNA. Here we present evidence that young mitochondria of the rapidly senescing race, A+, possess an extremely high copy number of alpha-event senDNA plasmid in contrast to the more slowly senescing races s+ or s-. Moreover, we observe that during senescence the alpha-event senDNA and the beta-event senDNA (a 9.8-kbp monomer) are transposed to the nucleus and integrated into nuclear DNA. These plasmids contain the coding information for subunits I and III (respectively) of the mitochondrial cytochrome c oxidase. This constitutes the first clear evidence for the active mobilization of genetic elements from the mitochondrion to the nucleus.  相似文献   

17.
Many plants use day length as an environmental cue to ensure proper timing of the switch from vegetative to reproductive growth. Day-length sensing involves an interaction between the relative length of day and night, and endogenous rhythms that are controlled by the plant circadian clock. Thus, plants with defects in circadian regulation cannot properly regulate the timing of the floral transition. Here we describe the gene EARLY FLOWERING 4 (ELF4), which is involved in photoperiod perception and circadian regulation. ELF4 promotes clock accuracy and is required for sustained rhythms in the absence of daily light/dark cycles. elf4 mutants show attenuated expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a gene that is thought to function as a central oscillator component. In addition, elf4 plants transiently show output rhythms with highly variable period lengths before becoming arrhythmic. Mutations in elf4 result in early flowering in non-inductive photoperiods, which is probably caused by elevated amounts of CONSTANS (CO), a gene that promotes floral induction.  相似文献   

18.
应用函数列的极限理论和累次极限对累次积分换序的处理   总被引:1,自引:1,他引:0  
应用函数列的极限与函数的极限交换次序定理及累次极限的理论,证明了黎曼可积函数列积分的极限定理,给出了累次积分的换序定理和二元连续函数的可积性的一种证明方法.  相似文献   

19.
分别以1d干旱和7d干旱处理的开花期玉米顶叶cDNA为tester,正常生长的玉米顸叶cDNA为driver,利用抑制性差减杂交技术构建了两个干旱胁迫下开花期玉米消减文库.两个文库的重组率均高于95%,插入片段集中在300—600bp之间.对两个文库部分克隆进行测序发现,文库中含有脱水素、蔗糖合成酶、甜菜碱醛脱氢酶。DRE结合因子等大量的抗旱相关基因,说明两个干旱胁迫下开花期玉米抑制性消减文库已经构建成功。且具有重要意义.  相似文献   

20.
D S Reading  R L Hallberg  A M Myers 《Nature》1989,337(6208):655-659
The hsp60 protein isolated from the protozoan Tetrahymena thermophila is induced in response to heat stress and is a member of an immunologically conserved family represented in Escherichia coli and in mitochondria of plants and animals. We report here the cloning and characterization of a nuclear gene, HSP60, which codes for the hsp60 homologue from the yeast Saccharomyces cerevisiae. Nucleotide sequence analysis revealed that yeast hsp60 is related to the groEL protein of E. coli and the RUBISCO-binding protein (RBP) of chloroplasts. HSP60 was found to be the genetic locus of the conditional-lethal mutation described by Cheng et al., which at non-permissive temperature is defective in the assembly of several different multisubunit complexes in mitochondria. These data are consistent with the hypothesis that the groEL-related proteins serve an evolutionarily conserved function as accessory factors facilitating the folding and/or association of individual subunits of multimeric protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号