首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
证明了满足极大条件可解p-群是幂零群;p-群中具有有限指数的极大子群是正规子群;如果群G=AB,其中A是有限p-群,|A'|=p,且对任意x不属于Z(A),CA(x)是交换群,B是G的半正规p-群,|B'|=p^a,那么G的导出长度至多为n 3。  相似文献   

2.
令G是1个有限群,且H是G的1个子群.子群H称为在G中是弱Π嵌入的,如果存在G的1个子群对(T,S)使得|G:HT|是某个素数的方幂,且(H∩T)/H_G≤S/H_G,其中T是G的1个包含H_G的拟正规子群且S/H_G≤H/H_G是G/H_G的1个满足Π性质的子群.这里利用弱Π嵌入子群研究有限群的结构.特别地,得到了子群是超循环嵌入的新判断准则.  相似文献   

3.
设F是一个群类.如果群G中存在一个正规子群T,使得HTG且(H∩T)HG/HG≤ZF∞(G/HG),则G的子群H称为G的Fsn-子群.利用Fsn-子群的概念得到Fsn-子群的性质以及可解群的一些新的判别准则,并对以前的结果进行推广.主要结论有:①设N是群G的非单位的正规子群,则N是可解群当且仅当G的每个不包含N的极大子群是G的Ssn-子群;②群G是可解群当且仅当G的每一个2-极大子群都是G的Ssn-子群;③设G是一个群,p是|G|的最小素因子,P是G的某个Sylowp-子群,则G是可解群当且仅当P的每个极大子群是G的Ssn-子群;④设G是一个群,p是|G|的最小素因子,P是G的某个Sylowp-子群.若G是A4-自由群且P的每个2-极大子群(如果存在)是G的Ssn-子群,则G是可解群.  相似文献   

4.
证明了:若G为有限群,且|cd(G)|=|cs(G)|=3,则G=H×A.其中A是交换群,H是非交换(p-)群且|cs(H)|=3,或H=KL,K(_)H,(|K|,|L|)=1,K是非交换p群且|cs(K)|=2,L是交换群,Z(K)=Z(H)∩K,H/Z(H)是Frobenius群,并且|cd(K)|=2,c(K)...  相似文献   

5.
设H是有限群G的一个子群,称H在G中是F-z-可补的,如果存在G的一个子群K,使得G=HK且H∩K≤Z∞(G),其中,是一个群系.首先利用p阶和p2阶子群的Np-z-可补性,得到如下结论:1)令G是与A4无关的有限群,p是|G|的最小的素因数,P是GNp(群G的Np-剩余类)的Sylow p-子群.如果P的每个p或4阶循环子群均在G中Np-z-可补,那么G是p-幂零群.2)令G有限群,p是|G|满足(|G|,p2-1)=1的素因数.令H是G的正规子群使得G/H是p-幂零的.若H的每个阶为p2的子群均在G中Np-z-可补,则G是p-幂零的.其次探讨Sylow p-子群的2-极大子群的U-z-可补性对p-幂零群结构的影响,得到如下结论:3)令p的|G|最小的素因数.若G与A4无关且Gp每个2-极大子群均在G中U-z-可补,则G是p-幂零的.  相似文献   

6.
设T(G)和k(G)分别为有限群G的复特征标次数和与共轭类数,且设p是素数,若|G|/T(G)<2p/(p+1)或|G|/k(G)<4p/(p+3),则G是p-幂零群.  相似文献   

7.
设G为有限非交换群,χ是G的非线性不可约特征标,则有|G/kerχ|=t_χ·χ(1)对某个t_χ∈N成立.进一步地,若χ(1)~2||G/kerχ|,则G为幂零群.考虑一般情况,对满足G的任一非线性不可约特征标χ都有|G/kerχ|≤p_mχ(1)2的群G的结构得到初步结论,其中p_m为|G/kerχ|的最大素因子.利用有限单群分类定理证明群G一定非单.  相似文献   

8.
H,G为有限群,如果H的子群AH的Abel直因子,则HG的同态个数是|A||G|的最大公因子的倍数。推广了著名的T.Yoshida定理。  相似文献   

9.
利用群作用的等价类, 将上循环集与群同态进行联系. 通过上循环集对两个有限群之间的同态个数进行刻画, 证明了对任意有限群A,G, 如果A,G的上循环集中元素的个数可被|A|和|G|的最大公因子整除, 则A,G之间的同态个数可被|A|和|G|的最大公因子整除.  相似文献   

10.
自同构群的阶为2~4p的有限Abel群G的构造   总被引:3,自引:0,他引:3  
利用有限Abel群G的自同构群A(G)的阶来讨论群G的构造,给出了|A(G)|=2~4p的有限Abel群G的全部类型.  相似文献   

11.
利用Sylow p-子群的极大子群的m-嵌入性质研究群G的p-模子群O~p(G),并得到G的主因子结构.主要证明了如下结果:1)若G的Sylow p-子群的每个极大子群在G中是m-嵌入的,则G是p-超可解的或Op(G)=G;2)设E■G,若E的Sylow p-子群的每个极大子群在G中是m-嵌入的,且O~p(G)G,则|E_p|=p或E之下的每一个G-主因子A/B均满足下列情形之一:(1)A/B≤ΦG(/B);(2)A/B是p′-群;(3)|A/B|=p.  相似文献   

12.
设X是群G的非空子集,H是G的子群,如果H在G中有一个补充T使得H和T的所有Sylow子群X-置换,则称H在G中X-s-半置换.利用于群的X-s-半置换性得到下列结果:①设是包含所有超可解群的饱和群系,X是群G的可解正规子群,则G∈当且仅当存在H G使得G/H∈且H的每个Sylow子群的每个极大子群在G中X-s-半置换.②设是包含所有超可解群的饱和群系,X是群G的可解正规子群且H G.如果G/H∈且F(H)的每个Sylow子群的每个极大子群在G中X-s-半置换,则G∈③设X是群G的一个p-可解正规子群,p是|G|的最小素因子.如果G是A4-自由的,且存在H G使得G/H是p-幂零的并满足H的每个Sylow p-子群的每个2-极大子群在G中X-s-半置换,那么G是声p-幂零的.  相似文献   

13.
O.Schmidt的定理认为:如果有限群G的每个真子群是幂零的,则G是可解的.本文将这个著名的定理推广到更一般的情形,即证明:如果有限群G的每个真子群是SQN-1群,则G是可解的.作为这个结果的推论,我们还得到:如果有限群G是极小非SQN-1群,则|π(G)|=2.  相似文献   

14.
广义逆A(2)T,S的表示与计算   总被引:1,自引:1,他引:1  
比较系统的总结了A(2)T,S的各种表示,与此同时,给出A(2)T,S的三个新的表达式,A(2)T,S=(E1GAE2)-1(E10)G或A(2)T,S=G(F1 0)-1(AGF1 F2)以及A(2)T,S=-1/β0((GA)s-1 βs-1(GA)s-2 … β2(GA) β1In)G=-1/β0G((AG)s-1 βs-1(AG)s-2 … β2(AG) β1In)利用前两种表达式,我们给出A(2)T,S逆的Gauss-Jordan消去法的求法.  相似文献   

15.
令G是一个有限群.|G|表示群G的阶.记ρ(G)={p|p是χ(1)的素因子,其中χ是G的某个不可约特征标}.在这篇文章中,我们用|G|和|ρ(G)|来刻划某些有限单群G.例如,我们证明了下述结果:如果|G|=10073444472且|ρ(G)|=6,则G2 G2(33).  相似文献   

16.
文献(A.R.Moghaddamfar,A.R.Zokayi,M.R.Darafsheh.Algebra Colloquium,2005,12(3):431-442.)介绍了与群G的素图有关的度数型D(G).群G称为k-重OD-刻画,如果恰好存在k个不同构的群H使得|G|=|H|且D(G)=D(H).而且1-重OD-刻画群简称为OD-刻画.利用有限群的阶和它的度数型对对称群S39和S40进行了刻画,得到:设G为有限群,如果|G|=|H|且D(G)=D(H),其中H=S39或者S40,则G是3-重OD-刻画.  相似文献   

17.
设H是有限群G的一个子群,H在G中是弱Φ-可补的,如果存在G的一个子群K,使得G=HK且H∩K≤Φ(H),其中Φ(H)是H的Frattini子群.利用p阶和p~2阶子群的弱Φ-可补性,得到如下结论:1)设G是有限群,p是|G|的满足(|G|,p-1)=1的素因数.设E是G的一个正规子群使得G/E是p-幂零群.若■的每个阶为p或4循环子群均在G中弱Φ-可补,那么G是p-幂零群.2)设G有限群,p是|G|满足(|G|,p~2-1)=1的素因数.设E是G的正规子群使得G/E是p-幂零的.若■的每个阶为p~2的子群均在G中弱Φ-可补,则G是p-幂零的.由这些结论,得到了一系列推论,推广了已知结果.  相似文献   

18.
设G为有限群,C(G)为G的循环子群的集合.给出了含有|G|-4个循环子群的有限群G的完全分类.作为推论,得到了A4是满足|C(G)|=|G|-4的唯一的非超可解的有限群G,从而给出了刻画四次交错群的新角度.  相似文献   

19.
利用有限交换群G的自同构群A(G)的阶来刻划群G的结构,证明了当|A(G)|=24p2q(p,q是不同的奇素数)时,G至多有150型.  相似文献   

20.
研究了幂零完全可约线性群的阶的上界,并且由此改进了Burnsidepaqb补充定理.证明了:定理1 令V≠0是含qm个元素的有限域上的n维向量空间,q为素数.设G为完全线性群GL(V)的幂零完全可约子群,则有(Ⅰ)|G|≤14|V|β,除非(i) |V|≤8,|G|=|V|-1;(ii) |V|=32l(l≥1)且|G|=12|V|β=25·2l-1-1,此时GL(V)=GL(2l,3),G∈Syl2(GL(V)),β=log32/log9.(Ⅱ)若G是p群且(p,q)(2,F)∪(M,2)∪(2,7),|G|≠12(|V|-1),则有|G|≤38|V|,特别地若还有|V|≠24,q,q3,则|G|≤14|V|.其中F,M分别表示Fermat和Mersenne素数集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号