共查询到20条相似文献,搜索用时 15 毫秒
1.
Life on Earth depends on photosynthesis, the conversion of light energy from the Sun to chemical energy. In plants, green algae and cyanobacteria, this process is driven by the cooperation of two large protein-cofactor complexes, photosystems I and II, which are located in the thylakoid photosynthetic membranes. The crystal structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus described here provides a picture at atomic detail of 12 protein subunits and 127 cofactors comprising 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, 4 lipids, a putative Ca2+ ion and 201 water molecules. The structural information on the proteins and cofactors and their interactions provides a basis for understanding how the high efficiency of photosystem I in light capturing and electron transfer is achieved. 相似文献
2.
Serologically detected antigenic determinants unique to an antibody or group of antibodies are called idiotopes. The sum of idiotopes of an antibody constitute its idiotype. Idiotypes have been intensively studied following a hypothesis for the self-regulation of the immune system through a network of idiotype-anti-idiotype interactions. Furthermore, as antigen and anti-idiotypes can competitively bind to idiotype-positive, antigen-specific antibodies, anti-idiotypes may carry an 'internal image' of the external antigen. Here we describe the structure of the complex between the monoclonal anti-lysozyme FabD1.3 and the anti-idiotopic FabE225 at 2.5 A resolution. This complex defines a private idiotope consisting of 13 amino-acid residues, mainly from the complementarity-determining regions of D1.3. Seven of these residues make contacts with the antigen, indicating a significant overlap between idiotope and antigen-combining site. Idiotopic mimicry of the external antigen is not achieved at the molecular level in this example. 相似文献
3.
The major light-harvesting complex of photosystem II (LHC-II) serves as the principal solar energy collector in the photosynthesis of green plants and presumably also functions in photoprotection under high-light conditions. Here we report the first X-ray structure of LHC-II in icosahedral proteoliposome assembly at atomic detail. One asymmetric unit of a large R32 unit cell contains ten LHC-II monomers. The 14 chlorophylls (Chl) in each monomer can be unambiguously distinguished as eight Chla and six Chlb molecules. Assignment of the orientation of the transition dipole moment of each chlorophyll has been achieved. All Chlb are located around the interface between adjacent monomers, and together with Chla they are the basis for efficient light harvesting. Four carotenoid-binding sites per monomer have been observed. The xanthophyll-cycle carotenoid at the monomer-monomer interface may be involved in the non-radiative dissipation of excessive energy, one of the photoprotective strategies that have evolved in plants. 相似文献
4.
5.
A phage repressor-operator complex at 7 A resolution 总被引:1,自引:0,他引:1
The crystal structure of a complex between the DNA-binding domain of phage 434 repressor and a synthetic 434 operator shows that the protein, very similar in conformation to gamma repressor, binds to B-form DNA with the second alpha-helix of a helix-turn-helix motif lying in the major groove. 相似文献
6.
Crystal structure of trp repressor/operator complex at atomic resolution 总被引:98,自引:0,他引:98
Z Otwinowski R W Schevitz R G Zhang C L Lawson A Joachimiak R Q Marmorstein B F Luisi P B Sigler 《Nature》1988,335(6188):321-329
The crystal structure of the trp repressor/operator complex shows an extensive contact surface, including 24 direct and 6 solvent-mediated hydrogen bonds to the phosphate groups of the DNA. There are no direct hydrogen bonds or non-polar contacts to the bases that can explain the repressor's specificity for the operator sequence. Rather, the sequence seems to be recognized indirectly through its effects on the geometry of the phosphate backbone, which in turn permits the formation of a stable interface. Water-mediated polar contacts to the bases also appear to contribute part of the specificity. 相似文献
7.
Polyoma virus capsid structure at 22.5 A resolution 总被引:32,自引:0,他引:32
X-ray diffraction data from polyoma capsid crystals were phased by refinement of low-resolution starting models to obtain a self-consistent structural solution. The unexpected result that the hexavalent morphological unit is a pentamer shows that specificity of bonding is not conserved among the protein subunits in the icosahedrally symmetric capsid. 相似文献
8.
The crystal structure of the met repressor-operator complex shows two dimeric repressor molecules bound to adjacent sites 8 base pairs apart on an 18-base-pair DNA fragment. Sequence specificity is achieved by insertion of double-stranded antiparallel protein beta-ribbons into the major groove of B-form DNA, with direct hydrogen-bonding between amino-acid side chains and the base pairs. The repressor also recognizes sequence-dependent distortion or flexibility of the operator phosphate backbone, conferring specificity even for inaccessible base pairs. 相似文献
9.
10.
Transport and membrane integration of polypeptides is carried out by specific protein complexes in the membranes of all living cells. The Sec transport path provides an essential and ubiquitous route for protein translocation. In the bacterial cytoplasmic membrane, the channel is formed by oligomers of a heterotrimeric membrane protein complex consisting of subunits SecY, SecE and SecG. In the endoplasmic reticulum membrane, the channel is formed from the related Sec61 complex. Here we report the structure of the Escherichia coli SecYEG assembly at an in-plane resolution of 8 A. The three-dimensional map, calculated from two-dimensional SecYEG crystals, reveals a sandwich of two membranes interacting through the extensive cytoplasmic domains. Each membrane is composed of dimers of SecYEG. The monomeric complex contains 15 transmembrane helices. In the centre of the dimer we observe a 16 x 25 A cavity closed on the periplasmic side by two highly tilted transmembrane helices. This may represent the closed state of the protein-conducting channel. 相似文献
11.
Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution 总被引:17,自引:0,他引:17
The only well-understood mechanism of zymogen activation is that of the serine proteinases, in which proteolytic cleavage leads to conformational changes resulting in a functional active site. A different mechanism is now unveiled by the crystal structure of pepsinogen. Salt bridges that stabilize the positioning of the N-terminal proenzyme segment across the active site of pepsin are disrupted at low pH, releasing the amino-terminal segment and thereby exposing the catalytic apparatus and the substrate-binding sites. 相似文献
12.
Three-dimensional structure of the lipovitellin-phosvitin complex from amphibian oocytes 总被引:2,自引:0,他引:2
Microcrystals of the lipoprotein-phosphoprotein complex which are found in the oocytes of Xenopus laevis were examined using electron microscopy. Analysis of Fourier transforms of the images of the (010) and (001) projections showed the space group to be P2(1)22(1). Ten projections were combined to produce a map of the complex having about 20 A resolution. The lipoprotein complex consists of two subunits related by a local twofold symmetry axis. The density was averaged around the local symmetry and reasonably well defined structural domains can be seen in the resulting model. 相似文献
13.
14.
Virtually all cells in all eukaryotic organisms express ion channels of the ClC type, the only known molecular family of chloride-ion-selective channels. The diversity of ClC channels highlights the multitude and range of functions served by gated chloride-ion conduction in biological membranes, such as controlling electrical excitability in skeletal muscle, maintaining systemic blood pressure, acidifying endosomal compartments, and regulating electrical responses of GABA (gamma-aminobutyric acid)-containing interneurons in the central nervous system. Previously, we expressed and purified a prokaryotic ClC channel homologue. Here we report the formation of two-dimensional crystals of this ClC channel protein reconstituted into phospholipid bilayer membranes. Cryo-electron microscopic analysis of these crystals yields a projection structure at 6.5 A resolution, which shows off-axis water-filled pores within the dimeric channel complex. 相似文献
15.
The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution 总被引:88,自引:0,他引:88
The structure of foot-and-mouth disease virus has been determined at close to atomic resolution by X-ray diffraction without experimental phase information. The virus shows similarities with other picornaviruses but also several unique features. The canyon or pit found in other picornaviruses is absent; this has important implications for cell attachment. The most immunogenic portion of the capsid, which acts as a potent peptide vaccine, forms a disordered protrusion on the virus surface. 相似文献
16.
Aequorin is a calcium-sensitive photoprotein originally obtained from the jellyfish Aequorea aequorea. Because it has a high sensitivity to calcium ions and is biologically harmless, aequorin is widely used as a probe to monitor intracellular levels of free calcium. The aequorin molecule contains four helix-loop-helix 'EF-hand' domains, of which three can bind calcium. The molecule also contains coelenterazine as its chromophoric ligand. When calcium is added, the protein complex decomposes into apoaequorin, coelenteramide and CO2, accompanied by the emission of light. Apoaequorin can be regenerated into active aequorin in the absence of calcium by incubation with coelenterazine, oxygen and a thiol agent. Cloning and expression of the complementary DNA for aequorin were first reported in 1985 (refs 2, 6), and growth of crystals of the recombinant protein has been described; however, techniques have only recently been developed to prepare recombinant aequorin of the highest purity, permitting a full crystallographic study. Here we report the structure of recombinant aequorin determined by X-ray crystallography. Aequorin is found to be a globular molecule containing a hydrophobic core cavity that accommodates the ligand coelenterazine-2-hydroperoxide. The structure shows protein components stabilizing the peroxide and suggests a mechanism by which calcium activation may occur. 相似文献
17.
Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex 总被引:31,自引:0,他引:31
Syntaxin 1a and neuronal Sec1 (nSec1) form an evolutionarily conserved heterodimer that is essential for vesicle trafficking and membrane fusion. The crystal structure of the nSec1-syntaxin 1a complex, determined at 2.6 A resolution, reveals that major conformational rearrangements occur in syntaxin relative to both the core SNARE complex and isolated syntaxin. We identify regions of the two proteins that seem to determine the binding specificity of particular Sec1 proteins for syntaxin isoforms, which is likely to be important for the fidelity of membrane trafficking. The structure also indicates mechanisms that might couple the action of upstream effector proteins to conformational changes in syntaxin 1a and nSec1 that lead to core complex formation and membrane fusion. 相似文献
18.
Three-dimensional structure of plant light-harvesting complex determined by electron crystallography 总被引:25,自引:0,他引:25
The structure of the light-harvesting chlorophyll a/b-protein complex, a membrane protein serving as the major antenna of solar energy in plant photosynthesis, has been determined at 6 A resolution by electron crystallography. Within the complex, three membrane-spanning alpha helices and 15 chlorophyll molecules are resolved. There is an intramolecular diad relating two of the alpha helices and some of the chlorophylls. The spacing of the chlorophylls suggests energy transfer by delocalized exciton coupling and F?rster mechanisms. 相似文献
19.
20.
M A Navia J P Springer T Y Lin H R Williams R A Firestone J M Pisano J B Doherty P E Finke K Hoogsteen 《Nature》1987,327(6117):79-82
The continuing discovery and development of beta-lactams as antibiotics has had an unparalleled impact on the overall health and well-being of society. Recently, appropriately substituted cephalosporins were shown to be potent inhibitors of elastase, suggesting a novel therapeutic role for the beta-lactams in the control of emphysema and other degenerative diseases. We have now solved and partially refined at atomic resolution the structure of a complex of porcine pancreatic elastase with the time-dependent irreversible inhibitor 3-acetoxymethyl-7-alpha-chloro-3-cephem-4-carboxylate-1,1-dioxide tert-butyl ester (I), the most potent of the beta-lactam elastase inhibitors yet reported. (Porcine pancreatic elastase is a close relative of the desired drug target, human polymorphonuclear leukocyte elastase.) A mechanism of action is presented, based on the structure and on biochemical evidence (T.-Y.L. et al., in preparation), which clarifies the operational similarities and differences between beta-lactam elastase inhibitors and antibiotics. Features of the reaction include the expulsion of a leaving group at the cephalosporin 3' position and the formation of two covalent bonds with the active site of porcine pancreatic elastase at residues Ser 195 and His 57. 相似文献