首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canup RM 《Nature》2010,468(7326):943-946
The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys.  相似文献   

2.
Schmidt J  Brilliantov N  Spahn F  Kempf S 《Nature》2008,451(7179):685-688
One of the spectacular discoveries of the Cassini spacecraft was the plume of water vapour and icy particles (dust) originating near the south pole of Saturn's moon Enceladus. The data imply considerably smaller velocities for the grains than for the vapour, which has been difficult to understand. The gas and dust are too dilute in the plume to interact, so the difference must arise below the surface. Here we report a model for grain condensation and growth in channels of variable width. We show that repeated wall collisions of grains, with re-acceleration by the gas, induce an effective friction, offering a natural explanation for the reduced grain velocity. We derive particle speed and size distributions that reproduce the observed and inferred properties of the dust plume. The gas seems to form near the triple point of water; gas densities corresponding to sublimation from ice at temperatures less than 260 K are generally too low to support the measured particle fluxes. This in turn suggests liquid water below Enceladus' south pole.  相似文献   

3.
Johnson TV  Lunine JI 《Nature》2005,435(7038):69-71
The orbital properties of Phoebe, one of Saturn's irregular moons, suggest that it was captured by the ringed planet's gravitational field rather than formed in situ. Phoebe's generally dark surface shows evidence of water ice, but otherwise the surface most closely resembles that of C-type asteroids and small outer Solar System bodies such as Chiron and Pholus that are thought to have originated in the Kuiper belt. A close fly-by of Phoebe by the Cassini-Huygens spacecraft on 11 June 2004 (19 days before the spacecraft entered orbit around Saturn) provided an opportunity to test the hypothesis that this moon did not form in situ during Saturn's formation, but is instead a product of the larger protoplanetary disk or 'solar nebula'. Here we derive the rock-to-ice ratio of Phoebe using its density combined with newly measured oxygen and carbon abundances in the solar photosphere. Phoebe's composition is close to that derived for other solar nebula bodies such as Triton and Pluto, but is very different from that of the regular satellites of Saturn, supporting Phoebe's origin as a captured body from the outer Solar System.  相似文献   

4.
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3?kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.  相似文献   

5.
Saturn's main rings are composed predominantly of water-ice particles ranging between about 1 centimetre and 10 metres in radius. Above this size range, the number of particles drops sharply, according to the interpretation of spacecraft and stellar occultations. Other than the gap moons Pan and Daphnis (the provisional name of S/2005 S1), which have sizes of several kilometres, no individual bodies in the rings have been directly observed, and the population of ring particles larger than ten metres has been essentially unknown. Here we report the observation of four longitudinal double-streaks in an otherwise bland part of the mid-A ring. We infer that these 'propeller'-shaped perturbations arise from the effects of embedded moonlets approximately 40 to 120 m in diameter. Direct observation of this phenomenon validates models of proto-planetary disks in which similar processes are posited. A population of moonlets, as implied by the size distribution that we find, could help explain gaps in the more tenuous regions of the Cassini division and the C ring. The existence of such large embedded moonlets is most naturally compatible with a ring originating in the break-up of a larger body, but accretion from a circumplanetary disk is also plausible if subsequent growth onto large particles occurs after the primary accretion phase has concluded.  相似文献   

6.
In 2005, plumes were detected near the south polar region of Enceladus, a small icy satellite of Saturn. Observations of the south pole revealed large rifts in the crust, informally called 'tiger stripes', which exhibit higher temperatures than the surrounding terrain and are probably sources of the observed eruptions. Models of the ultimate interior source for the eruptions are under consideration. Other models of an expanding plume require eruptions from discrete sources, as well as less voluminous eruptions from a more extended source, to match the observations. No physical mechanism that matches the observations has been identified to control these eruptions. Here we report a mechanism in which temporal variations in tidal stress open and close the tiger-stripe rifts, governing the timing of eruptions. During each orbit, every portion of each tiger stripe rift spends about half the time in tension, which allows the rift to open, exposing volatiles, and allowing eruptions. In a complementary process, periodic shear stress along the rifts also generates heat along their lengths, which has the capacity to enhance eruptions. Plume activity is expected to vary periodically, affecting the injection of material into Saturn's E ring and its formation, evolution and structure. Moreover, the stresses controlling eruptions imply that Enceladus' icy shell behaves as a thin elastic layer, perhaps only a few tens of kilometres thick.  相似文献   

7.
Saturn's moon Titan shows landscapes with fluvial features suggestive of hydrology based on liquid methane. Recent efforts in understanding Titan's methane hydrological cycle have focused on occasional cloud outbursts near the south pole or cloud streaks at southern mid-latitudes and the mechanisms of their formation. It is not known, however, if the clouds produce rain or if there are also non-convective clouds, as predicted by several models. Here we show that the in situ data on the methane concentration and temperature profile in Titan's troposphere point to the presence of layered optically thin stratiform clouds. The data indicate an upper methane ice cloud and a lower, barely visible, liquid methane-nitrogen cloud, with a gap in between. The lower, liquid, cloud produces drizzle that reaches the surface. These non-convective methane clouds are quasi-permanent features supported by the global atmospheric circulation, indicating that methane precipitation occurs wherever there is slow upward motion. This drizzle is a persistent component of Titan's methane hydrological cycle and, by wetting the surface on a global scale, plays an active role in the surface geology of Titan.  相似文献   

8.
Sremcević M  Schmidt J  Salo H  Seiss M  Spahn F  Albers N 《Nature》2007,449(7165):1019-1021
The origin and evolution of planetary rings is one of the prominent unsolved problems of planetary sciences, with direct implications for planet-forming processes in pre-planetary disks. The recent detection of four propeller-shaped features in Saturn's A ring proved the presence of large boulder-sized moonlets in the rings. Their existence favours ring creation in a catastrophic disruption of an icy satellite rather than a co-genetic origin with Saturn, because bodies of this size are unlikely to have accreted inside the rings. Here we report the detection of eight new propeller features in an image sequence that covers the complete A ring, indicating embedded moonlets with radii between 30 m and 70 m. We show that the moonlets found are concentrated in a narrow 3,000-km-wide annulus 130,000 km from Saturn. Compared to the main population of ring particles (radius s < 10 m), such embedded moonlets have a short lifetime with respect to meteoroid impacts. Therefore, they are probably the remnants of a shattered ring-moon of Pan size or larger, locally contributing new material to the older ring. This supports the theory of catastrophic ring creation in a collisional cascade.  相似文献   

9.
Moore EB  Molinero V 《Nature》2011,479(7374):506-508
One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature, T(H) ≈ 232 K, yet the mechanism of ice crystallization-including the size and structure of critical nuclei-has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase on moving into the supercooled region, according to power laws that would diverge (that is, approach infinity) at ~225 K (refs 1, 2), so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below T(H). And although atomistic studies have captured water crystallization, high computational costs have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model in the supercooled regime around T(H) which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanisms of ice formation. The results of the simulations and classical nucleation theory using experimental data suggest that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below T(H) and well above its glass transition temperature, 136 K. By establishing a relationship between the structural transformation in liquid water and its anomalous thermodynamics and crystallization rate, our findings also provide mechanistic insight into the observed dependence of homogeneous ice nucleation rates on the thermodynamics of water.  相似文献   

10.
High-velocity submicrometre-sized dust particles expelled from the jovian system have been identified by dust detectors on board several spacecraft. On the basis of periodicities in the dust impact rate, Jupiter's moon Io was found to be the dominant source of the streams. The grains become positively charged within the plasma environment of Jupiter's magnetosphere, and gain energy from its co-rotational electric field. Outside the magnetosphere, the dynamics of the grains are governed by the interaction with the interplanetary magnetic field that eventually forms the streams. A similar process was suggested for Saturn. Here we report the discovery by the Cassini spacecraft of bursts of high-velocity dust particles (> or = 100 km s(-1)) within approximately 70 million kilometres of Saturn. Most of the particles detected at large distances appear to originate from the outskirts of Saturn's outermost main ring. All bursts of dust impacts detected within 150 Saturn radii are characterized by impact directions markedly different from those measured between the bursts, and they clearly coincide with the spacecraft's traversals through streams of compressed solar wind.  相似文献   

11.
Hunten DM 《Nature》2006,443(7112):669-670
Saturn's largest satellite, Titan, has a dense atmosphere of nitrogen with a few per cent of methane. At visible wavelengths its surface is hidden by dense orange-brown smog, which is produced in the stratosphere by photochemical reactions following the dissociation of methane by solar ultraviolet light. The most abundant of the products of these reactions is ethane, and enough of it should have been generated over the life of the Solar System to form a satellite-wide ocean one kilometre deep. Radar observations have found specular reflections in 75 per cent of the surface spots observed, but optical searches for a sun-glint off an ocean have been negative. Here I explain the mysterious absence or rarity of liquid ethane: it condenses onto the smog particles, instead of into liquid drops, at the cold temperatures in Titan's atmosphere. This dusty combination of smog and ethane, forming deposits several kilometres thick on the surface, including the observed dunes and dark areas, could be named 'smust'. This satellite-wide deposit replaces the ocean long thought to be an important feature of Titan.  相似文献   

12.
Carbonates on large Solar System bodies like Earth and Mars (the latter represented by the meteorite ALH84001) form through the weathering of silicates in a watery (CO3)2- solution. The presence of carbonates in interplanetary dust particles and asteroids (again, represented by meteorites) is not completely understood, but has been attributed to aqueous alteration on a large parent body, which was subsequently shattered into smaller pieces. Despite efforts, the presence of carbonates outside the Solar System has hitherto not been established. Here we report the discovery of the carbonates calcite and dolomite in the dust shells of evolved stars, where the conditions are too primitive for the formation of large parent bodies with liquid water. These carbonates, therefore, are not formed by aqueous alteration, but perhaps through processes on the surfaces of dust or ice grains or gas phase condensation. The presence of carbonates which did not form by aqueous alteration suggests that some of the carbonates found in Solar System bodies no longer provide direct evidence that liquid water was present on large parent bodies early in the history of the Solar System.  相似文献   

13.
Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90?billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.  相似文献   

14.
Murray CD  Chavez C  Beurle K  Cooper N  Evans MW  Burns JA  Porco CC 《Nature》2005,437(7063):1326-1329
Images of Saturn's narrow and contorted F ring returned by the Cassini spacecraft have revealed phenomena not previously detected in any planetary ring system. The perturbing effect of the inner shepherding satellite, Prometheus, seems to introduce channels through the F ring and a 'streamer'--a line of particles that link the ring to the satellite. The detailed mechanism for the formation of these features has been lacking an explanation. Here we show that these phenomena can be understood in terms of a simple gravitational interaction as Prometheus approaches and recedes from the F ring every 14.7 hours. Our numerical models show that as Prometheus recedes from its closest approach to the F ring, it draws out ring material; one orbital period later, this affected region has undergone keplerian shear and is visible as a channel, in excellent agreement with structures seen in the Cassini images. Prometheus' periodic disruption of the F ring will become more pronounced as the two orbits approach their minimum separation in 2009. The model predicts that the appearance of streamers and the associated channels will vary in a regular fashion on a timescale of one orbital period.  相似文献   

15.
Formation of ordered ice nanotubes inside carbon nanotubes   总被引:12,自引:0,他引:12  
Koga K  Gao GT  Tanaka H  Zeng XC 《Nature》2001,412(6849):802-805
Following their discovery, carbon nanotubes have attracted interest not only for their unusual electrical and mechanical properties, but also because their hollow interior can serve as a nanometre-sized capillary, mould or template in material fabrication. The ability to encapsulate a material in a nanotube also offers new possibilities for investigating dimensionally confined phase transitions. Particularly intriguing is the conjecture that matter within the narrow confines of a carbon nanotube might exhibit a solid-liquid critical point beyond which the distinction between solid and liquid phases disappears. This unusual feature, which cannot occur in bulk material, would allow for the direct and continuous transformation of liquid matter into a solid. Here we report simulations of the behaviour of water encapsulated in carbon nanotubes that suggest the existence of a variety of new ice phases not seen in bulk ice, and of a solid-liquid critical point. Using carbon nanotubes with diameters ranging from 1.1 nm to 1.4 nm and applied axial pressures of 50 MPa to 500 MPa, we find that water can exhibit a first-order freezing transition to hexagonal and heptagonal ice nanotubes, and a continuous phase transformation into solid-like square or pentagonal ice nanotubes.  相似文献   

16.
West RA  Brown ME  Salinas SV  Bouchez AH  Roe HG 《Nature》2005,436(7051):670-672
With its substantial atmosphere of nitrogen, hydrocarbons and nitriles, Saturn's moon Titan is a unique planetary satellite. Photochemical processing of the gaseous constituents produces an extended haze that obscures the surface. Soon after the Voyager fly-bys in 1980 and 1981 photochemical models led to the conclusion that there should be enough liquid methane/ethane/nitrogen to cover the surface to a depth of several hundred metres. Recent Earth-based radar echoes imply that surface liquid may be present at a significant fraction of the locations sampled. Here we present ground-based observations (at near-infrared wavelengths) and calculations showing that there is no evidence thus far for surface liquid. Combined with the specular signatures from radar observations, we infer mechanisms that produce very flat solid surfaces, involving a substance that was liquid in the past but is not in liquid form at the locations we studied.  相似文献   

17.
The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.  相似文献   

18.
Nimmo F  Spencer JR  Pappalardo RT  Mullen ME 《Nature》2007,447(7142):289-291
Enceladus, a small icy satellite of Saturn, has active plumes jetting from localized fractures ('tiger stripes') within an area of high heat flux near the south pole. The plume characteristics and local high heat flux have been ascribed either to the presence of liquid water within a few tens of metres of the surface, or the decomposition of clathrates. Neither model addresses how delivery of internal heat to the near-surface is sustained. Here we show that the most likely explanation for the heat and vapour production is shear heating by tidally driven lateral (strike-slip) fault motion with displacement of approximately 0.5 m over a tidal period. Vapour produced by this heating may escape as plumes through cracks reopened by the tidal stresses. The ice shell thickness needed to produce the observed heat flux is at least 5 km. The tidal displacements required imply a Love number of h2 > 0.01, suggesting that the ice shell is decoupled from the silicate interior by a subsurface ocean. We predict that the tiger-stripe regions with highest relative temperatures will be the lower-latitude branch of Damascus, Cairo around 60 degrees W longitude and Alexandria around 150 degrees W longitude.  相似文献   

19.
Tobie G  Lunine JI  Sotin C 《Nature》2006,440(7080):61-64
Saturn's largest satellite, Titan, has a massive nitrogen atmosphere containing up to 5 per cent methane near its surface. Photochemistry in the stratosphere would remove the present-day atmospheric methane in a few tens of millions of years. Before the Cassini-Huygens mission arrived at Saturn, widespread liquid methane or mixed hydrocarbon seas hundreds of metres in thickness were proposed as reservoirs from which methane could be resupplied to the atmosphere over geologic time. Titan fly-by observations and ground-based observations rule out the presence of extensive bodies of liquid hydrocarbons at present, which means that methane must be derived from another source over Titan's history. Here we show that episodic outgassing of methane stored as clathrate hydrates within an icy shell above an ammonia-enriched water ocean is the most likely explanation for Titan's atmospheric methane. The other possible explanations all fail because they cannot explain the absence of surface liquid reservoirs and/or the low dissipative state of the interior. On the basis of our models, we predict that future fly-bys should reveal the existence of both a subsurface water ocean and a rocky core, and should detect more cryovolcanic edifices.  相似文献   

20.
论黄河调水调沙   总被引:3,自引:0,他引:3  
首先从7个方面论述了黄河调水调沙的理论根据和实践基础,包括黄河下游输沙能力表达、堆积性与洪峰期间的巨大输沙能力、河道的游荡多变与平衡趋向性、“多来多排”的根据及利用、“冲河南(段),淤山东限)”及其相反、第二造床流量与平滩流量、下游排沙比与水库排沙比关系以及拦粗排细等.接着,根据6年来调水调沙的实践,阐述了5个方面的主要效益:加大了入海沙量;降低了洪水位;扩大了主槽和加大了平滩流量;增加了山东河段冲刷比例,没有发生“冲河南(段),淤山东(段)”;改善了小浪底水库变动回水区淤积部位,促进了异重流和浑水水库排出.尤其是加大了平滩流量,其最小值从1800m^3/s加大到3500m^3/s.利用调水调沙,大幅度改善了900km的河道,这在世界治河史上是创举.最后,分析了黄河调水调沙的巨大潜力,若能充分发挥,有可能利用75%的来水,排走全部来沙.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号