首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄、东海沿岸海表温度变化与厄尔尼诺的关系   总被引:1,自引:0,他引:1  
利用黄、东海沿岸8个长期水文观测站多年海表温度资料,分析黄、东海沿岸海表温度的季节和年际变化特征,重点分析在1982—1983年和1997—1998年两次厄尔尼诺年期间的异常变化,以及ENSO影响黄、东海沿岸海表温度的可能机制。结果表明,在厄尔尼诺发生年,夏季风较弱,鄂霍次克海高压加强,西太平洋副高位置偏南,强度偏强,江淮流域及长江中下游降水偏多,黄、东海沿岸海表温度偏低。黄、东海沿岸海表温度受到ENSO和PDO(太平洋年代际振荡)的影响和调制,在厄尔尼诺发生的前冬半年及当年,黄、东海沿岸海表温度偏低;在厄尔尼诺发生次年,黄、东海沿岸海表温度偏高。厄尔尼诺对黄、东海沿岸海表温度变化的影响通过海洋和大气2个通道,1982—1983年海表温度异常以负异常为主,1997—1998年海表温度异常以正异常为主;ENSO期间,北赤道流减弱,黑潮流量减少,海表温度降低。海表温度受局地气温影响显著,如果ENSO期间东亚气温升高,则黄、东海沿岸海表温度偏高。  相似文献   

2.
The relationships between the evolution of two types of El Ni?o events and the subsurface ocean temperature anomaly(SOTA) in the equatorial Pacific are compared in this study. The results show that both types of El Ni?o are negatively correlated to the SOTA in the equatorial western Pacific, but relationships are different in different phases of El Ni?o. Furthermore, the occurrence of different types of El Ni?o is related to different features of the equatorial thermocline, e.g. its zonal gradient, significant variation area, amplitude and duration of thermocline oscillation. The propagation of SOTA in the equator plays an important role during the evolution of both types of El Ni?o, but shows dramatic differences in intensity, duration and phase reverse of warm SOTA. Moreover, the pathways of SOTA signal are different between these two types of El Ni?o. The dominant pathway in the life cycle of Eastern Pacific(EP)-El Ni?o lies on the equator and to its north, but there is no loop to the south of the equator. In contrast, the dominant pathway in Central Pacific(CP)-El Ni?o is located on the equator and to its south, and the propagation signal of SOTA to the north of the equator is very weak.The relationships between the zonal wind anomalies and the two types of El Ni?o are also preliminarily discussed. It is shown that EP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial central and western Pacific, while CP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial western Pacific and need the cooperation of easterly anomalies over the equatorial eastern Pacific to certain extent.  相似文献   

3.
In this paper, the sea surface height and the heat content of the upper ocean are analyzed to retrieve the relationship of interannual variabilities between the tropical western Pacific and eastern Indian Oceans during the 1997 - 1998 El Nino event. In the prophase of this El Nino, the negative sea level anomalies (SLA) occurred in the tropical western Pacific (TWP) firstly, and then appeared in the tropical eastern Indian Ocean (TEI). The negative heat content anomalies (HCA) emerged in the TWP before this El Nino burst while the SLA signals developed over there. During the mature stage of this El Nino, two kinds of signals in the TWP and TEI turned to be the maximum negative sequently. Due to the connected interannual adjustment between the TEI and TWP, we adopted a method to estimate the Indonesian Throughflow (ITF) transport by calculating the HCA budget in the TEI. The indirect estimation of the ITF was comparable to the observation values. Therefore, the anomalies in the TEI had been proved as adv  相似文献   

4.
The propagation characteristics of signals along different zonal-time profiles are analyzed using surface and subsurface temperature anomalies over the tropical Pacific and Indian oceans. Analyses show that there are intrinsic relationships between El Nio events in the eastern equatorial Pacific and dipole events in the equatorial Indian Ocean. In the region of tropical North Pacific between the equator and 16°N, there is a circle of propagation of subsurface temperature anomalies. El Nio events only happen when the warm subsurface signals reach the eastern equatorial Pacific. Dipole events are characterized when a warm subsurface signal travels along off-equatorial Indian Ocean to the western boundary. From these analyses, we believe that subsurface temperature anomalies can be considered to be the oceanographic early signal to forecast El Nio events in Pacific Ocean and dipole events in Indian Ocean, respectively.  相似文献   

5.
The relationship between the anomalous East Asian winter monsoon (EAWM) activity and the tropical Pacific SST anomalies has been identified using the results of 40-year integration of the IAP CGCM1 model and 10-year observational data. In the strong EAWM year, the western and central Pacific are dominated by positive SST anomalies while the eastern Pacific is negative ones. In the weak EAWM year, the SSTA pattern is quite different and shows El Nino-like SST anomalies. The strong EAWM activity tends to create extra easterly flow to the east and extra westerly flow to the west of the warm SSTA region over the equatorial western and central Pacific, thus leading to the enhancement of convergence and convection of the flow in this region and favorable to the maintenance and development of such an SSTA pattern. On the other hand, the warm SST anomaly over the western and central Pacific, as a forcing, may lead to a specific pattern of the northern extratropical atmosphere, which is favorable to the strong EAWM activity. The tropical Pacific SSTA pattern related closely to the strong EAWM activity differs significantly from that of the La Nina year.  相似文献   

6.
对1951-1999年中国夏季江淮流域降水异常与海温异常关系的分析表明,前期及同期各季节三大洋海表温度异常(SSTA)与长江流域降水异常的关系是非常显著的,而对淮河流域降水异常总体上的影响较小,前期冬季SSTA的影响显著区主要有:热带印度洋、黑潮、热带中东太平洋和大西洋,各关键区海温异常对亚洲夏季风的影响特征为:当前期冬季赤道印度洋、黑潮、赤道大西洋和热带东太平洋海表温度异常升高(降低),当年夏季印度西南季风和东亚热带辐合带减弱(加强),副热带高压位置偏南(北),副热带辐合带加强(减弱),长江流域易发生洪涝(干旱),相关显著性分析表明,前冬赤道印度洋和黑潮区的海温异常对中国夏季降水的影响更为显著。  相似文献   

7.
The global sea surface temperature (SST) anomaly data from 1950 to 1996 were used to analyze spatial characters of interdecadal SST variations. A wavelet transform was made for the equatorial eastern Pacific SST anomaly time series. Results show that there are three remarkable timescale SST variations: 130-month interdecadal variation, 57-month interannual variation and 28-month quasi-2-a variation. Based on this result, an El Nino event was predicted in the early part of 1997.  相似文献   

8.
The relationship between sea surface temperature anomaly (SSTA) and wind energy input in the Pacific Ocean over the period of 1949–2003 is studied by using daily-mean NOAA/NCEP wind stress and monthly mean Reynolds SST data. The results indicate the strong negative correlation between SSTA and local wind energy input to surface waves in most of the domain at low and middle latitudes. The SST is low (high) during the years with more (less) wind energy input. The correlation coefficients are high in the central and eastern tropical Pacific and the central midlatitude North Pacific at the decadal scale, and in the central tropical Pacific at the interannual scale. Vertical mixing processes in the upper ocean are closely associated with wind energy input, indicating that wind energy input may play an important role in interannual and decadal variability in the Pacific Ocean via regulating vertical mixing.  相似文献   

9.
The interannual-to-interdecadal relationship between the Pacific sea surface temperature (SST) and the northern hemispheric midlatitude's atmosphere represented by the circumpolar vortex was documented with the global oceanic and atmospheric reanalysis data of recent 50 years. Two covarying modes of the Pacific SST and northern circumpolar vortex anomalies during winter were examined using the singular value decomposition and wavelet analysis techniques. One is the interannual, ENSO-related mode and the other is the interdecadal, North Pacific SST-related mode with a period of around 20 years. The two modes exhibit distinct spatial structures. For the interannual mode, the SST anomaly is characterized by a typical ENSO pattern with the principal signature in the tropical eastern Pacific and secondary one in the central North Pacific, while the atmospheric anomaly is regional, characterized by a Pacific-North American pattern. For the inter- decadal mode, large SST anomaly is located in the central North Pacific, while the atmospheric anomaly is zonally global, associated with the midlatitute's standing long-wave variations. When the central North Pacific is colder, the long-wave is stronger, and vice versa. Further investigations suggest that the interdecadal mode could involve an interaction between "two oceans and an atmosphere".  相似文献   

10.
Using 1961—1995 monthly atmospheric apparent heat source/sink <Q1> over the Qinghai-Xizang Plateau (QXP) and reanalysis data of NCEP/NCAR, and 1961—1994 monthly SST of UK/GISST2, the statistical study is undertaken on the QXP heat source/sink in relation to both atmospheric circulation in Asia and El Niño/La Niña events. It is discovered that there exists noticeable interaction in a quasi-4-year period among the <Q1> of the QXP, low-level meridional winds east of the QXP, low-level zonal winds in the equatorial Pacific, SST in the equatorial eastern Pacific, and the circulation at mid and high latitudes north of the QXP. They have difference in phase. The cold source intensity of the QXP in winter favours a low-level meridional wind anomaly to prevail in the mainland of China and its coast east of the QXP and to last until the subsequent autumn. The wind anomaly can induce a low-level zonal wind anomaly of the tropic Pacific that finally affects an El Niño/La Niña event in the autumn and subsequent winter. The event in autumn/winter has effect on the deep trough position and cold air track of East Asia in next winter that influences the intensity of the QXP winter cold source.  相似文献   

11.
Data sets of the changes of the length of day, the sea surface temperature in the eastern Pacific and of the sea level in Hong Long from tide gauge observations are used to analyze and reveal the reflections in the observations of the length of day and the sea level changes concerned with the premonitory phenomenon of next El Ni(n)o event. The results from this study indicate that a new El Ni(n)o event has been brewing with the ending of the strong La Nina event that started in early summer of 1998. The estimated formation period of the new El Ni(n)o event will begin before the end of 2000, and the peak period may be reached at around the end of 2001.  相似文献   

12.
为了研究热带印度洋偶极子(IOD)爆发年其耦合作用迅速消亡是否由海流异常引起,利用1958—2007年热带印度洋月均海表面温度(SST)和海流数据,分析IOD的主要特征,并探讨IOD与ENSO和海流异常之间的相关关系。通过对印度洋偶极子指数(DMI)及其经Hilber-t Huang变换后得到的固有模态函数(IMF)与南方涛动指数(SOI)的相关性分析,指出IOD与ENSO之间可能存在相关性,其中,表现出准2a周期振荡的IMF-3与ENSO相关性最好。通过对IOD爆发年DMI的进一步分析,证实IOD具有季节锁相的重要特征,并探讨该季节变化与海流异常的相关关系。结果表明,海流异常在热带印度洋SST的耦合振荡中起重要作用,但是它可能不是引起IOD迅速消亡的原因。  相似文献   

13.
The El Ni?o/Southern Oscillation (ENSO) system during the Pliocene warm period (PWP; 3-5 million years ago) may have existed in a permanent El Ni?o state with a sharply reduced zonal sea surface temperature (SST) gradient in the equatorial Pacific Ocean. This suggests that during the PWP, when global mean temperatures and atmospheric carbon dioxide concentrations were similar to those projected for near-term climate change, ENSO variability--and related global climate teleconnections-could have been radically different from that today. Yet, owing to a lack of observational evidence on seasonal and interannual SST variability from crucial low-latitude sites, this fundamental climate characteristic of the PWP remains controversial. Here we show that permanent El Ni?o conditions did not exist during the PWP. Our spectral analysis of the δ(18)O SST and salinity proxy, extracted from two 35-year, monthly resolved PWP Porites corals in the Philippines, reveals variability that is similar to present ENSO variation. Although our fossil corals cannot be directly compared with modern ENSO records, two lines of evidence suggest that Philippine corals are appropriate ENSO proxies. First, δ(18)O anomalies from a nearby live Porites coral are correlated with modern records of ENSO variability. Second, negative-δ(18)O events in the fossil corals closely resemble the decreases in δ(18)O seen in the live coral during El Ni?o events. Prior research advocating a permanent El Ni?o state may have been limited by the coarse resolution of many SST proxies, whereas our coral-based analysis identifies climate variability at the temporal scale required to resolve ENSO structure firmly.  相似文献   

14.
Stott L  Cannariato K  Thunell R  Haug GH  Koutavas A  Lund S 《Nature》2004,431(7004):56-59
In the present-day climate, surface water salinities are low in the western tropical Pacific Ocean and increase towards the eastern part of the basin. The salinity of surface waters in the tropical Pacific Ocean is thought to be controlled by a combination of atmospheric convection, precipitation, evaporation and ocean dynamics, and on interannual timescales significant variability is associated with the El Ni?o/Southern Oscillation cycles. However, little is known about the variability of the coupled ocean-atmosphere system on timescales of centuries to millennia. Here we combine oxygen isotope and Mg/Ca data from foraminifers retrieved from three sediment cores in the western tropical Pacific Ocean to reconstruct Holocene sea surface temperatures and salinities in the region. We find a decrease in sea surface temperatures of approximately 0.5 degrees C over the past 10,000 yr, whereas sea surface salinities decreased by approximately 1.5 practical salinity units. Our data imply either that the Pacific basin as a whole has become progressively less salty or that the present salinity gradient along the Equator has developed relatively recently.  相似文献   

15.
赤道东太平洋海温及ElNino/LaNina的反演及预测   总被引:4,自引:1,他引:3       下载免费PDF全文
基于NCEP/NCAR资料,利用人工神经网络BP模型及其优化算法比较准确地建立起了赤道纬向风同滞后的赤道东太平洋海温之间的映射关系和预报模型,该模型具有较好的拟合精度和预报效果,可以效好地描绘赤道东太平洋海温的变化趋势,比较成功地模拟和仿真出了1982/1983和1986/1987年的ElNino以及1988年的LaNina现象.  相似文献   

16.
Using wavelet transform, the sea surface temperature (SST) during the period of 1982–1999 of the South China Sea and the equatorial Pacific, from datasets of NOAA/AVHRR, was analyzed. It is shown that there are 4- and 8-year interannual oscillations in the eastern equatorial Pacific and 8-year interannual oscillation in the western equatorial Pacific. In terms of attractive time-frequency localization and multi-scale properties of wavelet transform, as shown by the Morlet wavelet, it is found that an in-phase coupling oscillation occurs between the SCS and the equatorial Pacific. The SST changes of SCS will have echoed every event of EI Niño (abnormally warm) and La Niño (abnormally cold) in the equatorial Pacific. There is a positive correlation between the SCS and the western equatorial Pacific in the 8-year time-scale. Evidence is presented that the SST anomalies of the equatorial Pacific influence the SST of the SCS.  相似文献   

17.
The convection over the tropical western Pacific warm pool influences significantly the atmospheric circulation and climate in East Asia. Thus, the precursory signals of the convection may be used in the forecast of summer climate in China. According to the present results, the June-July-August (JJA) mean convection intensity over the warm pool is significantly related to the precursory positive and negative sea surface temperatures (SSTs) in the warm pool and in the equatorial central and eastern Pacific, respectively. It is also related to the simultaneous negative surface temperatures west to the Philippines. The analysis on the SSTs associated with the convection over the warm pool in individual month of summer shows that for the convection in June and July, there are precursory SST signals in the warm pool and the equatorial central and eastern Pacific. Therefore, this study shows that only the convection in June and July, rather than that in August, has precursory SST signals, despite the existence of the precursory signals of the JJA mean convection. Accordingly, it is implied that the interaction among the warm pool, equatorial central and eastern Pacific, and the region west to the Philippines may exhibit distinct features in the precursory period (preceding winter and spring) and in the simultaneous period.  相似文献   

18.
Chang P  Fang Y  Saravanan R  Ji L  Seidel H 《Nature》2006,443(7109):324-328
El Ni?o, the most prominent climate fluctuation at seasonal-to-interannual timescales, has long been known to have a remote impact on climate variability in the tropical Atlantic Ocean, but a robust influence is found only in the northern tropical Atlantic region. Fluctuations in the equatorial Atlantic are dominated by the Atlantic Ni?o, a phenomenon analogous to El Ni?o, characterized by irregular episodes of anomalous warming during the boreal summer. The Atlantic Ni?o strongly affects seasonal climate prediction in African countries bordering the Gulf of Guinea. The relationship between El Ni?o and the Atlantic Ni?o is ambiguous and inconsistent. Here we combine observational and modelling analysis to show that the fragile relationship is a result of destructive interference between atmospheric and oceanic processes in response to El Ni?o. The net effect of El Ni?o on the Atlantic Ni?o depends not only on the atmospheric response that propagates the El Ni?o signal to the tropical Atlantic, but also on a dynamic ocean-atmosphere interaction in the equatorial Atlantic that works against the atmospheric response. These results emphasize the importance of having an improved ocean-observing system in the tropical Atlantic, because our ability to predict the Atlantic Ni?o will depend not only on our knowledge of conditions in the tropical Pacific, but also on an accurate estimate of the state of the upper ocean in the equatorial Atlantic.  相似文献   

19.
Brandt P  Funk A  Hormann V  Dengler M  Greatbatch RJ  Toole JM 《Nature》2011,473(7348):497-500
Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean-atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Ni?o/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean-atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5?yr and amplitudes of more than 10?cm?s(-1) are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6?cm?s(-1) and 0.4?°C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.  相似文献   

20.
LU Riyu 《科学通报(英文版)》2005,50(18):2069-2073
The rainfall in North China during rainy season (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation of JA North China rainfall are examined. It is found that on the interannual timescale, the JA North China rainfall is associated with significant SST anomalies in the equatorial eastern Pacific, and the North China rainfall and SST anomaly in the equatorial eastern Pacific correspond to the similar variation of the upper-level westerly jet stream over East Asia. A possible mechanism is proposed for the influence of the SST anomalies in the equatorial eastern Pacific on the North China rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号