首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plantenberg JH  de Groot PC  Harmans CJ  Mooij JE 《Nature》2007,447(7146):836-839
Quantum computation requires quantum logic gates that use the interaction within pairs of quantum bits (qubits) to perform conditional operations. Superconducting qubits may offer an attractive route towards scalable quantum computing. In previous experiments on coupled superconducting qubits, conditional gate behaviour and entanglement were demonstrated. Here we demonstrate selective execution of the complete set of four different controlled-NOT (CNOT) quantum logic gates, by applying microwave pulses of appropriate frequency to a single pair of coupled flux qubits. All two-qubit computational basis states and their superpositions are used as input, while two independent single-shot SQUID detectors measure the output state, including qubit-qubit correlations. We determined the gate's truth table by directly measuring the state transfer amplitudes and by acquiring the relevant quantum phase shift using a Ramsey-like interference experiment. The four conditional gates result from the symmetry of the qubits in the pair: either qubit can assume the role of control or target, and the gate action can be conditioned on either the 0-state or the 1-state. These gates are now sufficiently characterized to be used in quantum algorithms, and together form an efficient set of versatile building blocks.  相似文献   

2.
Reed MD  DiCarlo L  Nigg SE  Sun L  Frunzio L  Girvin SM  Schoelkopf RJ 《Nature》2012,482(7385):382-385
Quantum computers could be used to solve certain problems exponentially faster than classical computers, but are challenging to build because of their increased susceptibility to errors. However, it is possible to detect and correct errors without destroying coherence, by using quantum error correcting codes. The simplest of these are three-quantum-bit (three-qubit) codes, which map a one-qubit state to an entangled three-qubit state; they can correct any single phase-flip or bit-flip error on one of the three qubits, depending on the code used. Here we demonstrate such phase- and bit-flip error correcting codes in a superconducting circuit. We encode a quantum state, induce errors on the qubits and decode the error syndrome--a quantum state indicating which error has occurred--by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate that corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate (known as a conditional-conditional NOT, or Toffoli, gate) in 63 nanoseconds, using an interaction with the third excited state of a single qubit. We find 85?±?1 per cent fidelity to the expected classical action of this gate, and 78?±?1 per cent fidelity to the ideal quantum process matrix. Using this gate, we perform a single pass of both quantum bit- and phase-flip error correction and demonstrate the predicted first-order insensitivity to errors. Concatenation of these two codes in a nine-qubit device would correct arbitrary single-qubit errors. In combination with recent advances in superconducting qubit coherence times, this could lead to scalable quantum technology.  相似文献   

3.
Realization of the Cirac-Zoller controlled-NOT quantum gate   总被引:4,自引:0,他引:4  
Quantum computers have the potential to perform certain computational tasks more efficiently than their classical counterparts. The Cirac-Zoller proposal for a scalable quantum computer is based on a string of trapped ions whose electronic states represent the quantum bits of information (or qubits). In this scheme, quantum logical gates involving any subset of ions are realized by coupling the ions through their collective quantized motion. The main experimental step towards realizing the scheme is to implement the controlled-NOT (CNOT) gate operation between two individual ions. The CNOT quantum logical gate corresponds to the XOR gate operation of classical logic that flips the state of a target bit conditioned on the state of a control bit. Here we implement a CNOT quantum gate according to the Cirac-Zoller proposal. In our experiment, two 40Ca+ ions are held in a linear Paul trap and are individually addressed using focused laser beams; the qubits are represented by superpositions of two long-lived electronic states. Our work relies on recently developed precise control of atomic phases and the application of composite pulse sequences adapted from nuclear magnetic resonance techniques.  相似文献   

4.
Nadj-Perge S  Frolov SM  Bakkers EP  Kouwenhoven LP 《Nature》2010,468(7327):1084-1087
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.  相似文献   

5.
Scalable quantum computation and communication require error control to protect quantum information against unavoidable noise. Quantum error correction protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments, but the inherent limitations of this technique prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.  相似文献   

6.
Sillanpää MA  Park JI  Simmonds RW 《Nature》2007,449(7161):438-442
As with classical information processing, a quantum information processor requires bits (qubits) that can be independently addressed and read out, long-term memory elements to store arbitrary quantum states, and the ability to transfer quantum information through a coherent communication bus accessible to a large number of qubits. Superconducting qubits made with scalable microfabrication techniques are a promising candidate for the realization of a large-scale quantum information processor. Although these systems have successfully passed tests of coherent coupling for up to four qubits, communication of individual quantum states between superconducting qubits via a quantum bus has not yet been realized. Here, we perform an experiment demonstrating the ability to coherently transfer quantum states between two superconducting Josephson phase qubits through a quantum bus. This quantum bus is a resonant cavity formed by an open-ended superconducting transmission line of length 7 mm. After preparing an initial quantum state with the first qubit, this quantum information is transferred and stored as a nonclassical photon state of the resonant cavity, then retrieved later by the second qubit connected to the opposite end of the cavity. Beyond simple state transfer, these results suggest that a high-quality-factor superconducting cavity could also function as a useful short-term memory element. The basic architecture presented here can be expanded, offering the possibility for the coherent interaction of a large number of superconducting qubits.  相似文献   

7.
Fedorov A  Steffen L  Baur M  da Silva MP  Wallraff A 《Nature》2012,481(7380):170-172
The Toffoli gate is a three-quantum-bit (three-qubit) operation that inverts the state of a target qubit conditioned on the state of two control qubits. It makes universal reversible classical computation possible and, together with a Hadamard gate, forms a universal set of gates in quantum computation. It is also a key element in quantum error correction schemes. The Toffoli gate has been implemented in nuclear magnetic resonance, linear optics and ion trap systems. Experiments with superconducting qubits have also shown significant progress recently: two-qubit algorithms and two-qubit process tomography have been implemented, three-qubit entangled states have been prepared, first steps towards quantum teleportation have been taken and work on quantum computing architectures has been done. Implementation of the Toffoli gate with only single- and two-qubit gates requires six controlled-NOT gates and ten single-qubit operations, and has not been realized in any system owing to current limits on coherence. Here we implement a Toffoli gate with three superconducting transmon qubits coupled to a microwave resonator. By exploiting the third energy level of the transmon qubits, we have significantly reduced the number of elementary gates needed for the implementation of the Toffoli gate, relative to that required in theoretical proposals using only two-level systems. Using full process tomography and Monte Carlo process certification, we completely characterize the Toffoli gate acting on three independent qubits, measuring a fidelity of 68.5?±?0.5 per cent. A similar approach to realizing characteristic features of a Toffoli-class gate has been demonstrated with two qubits and a resonator and achieved a limited characterization considering only the phase fidelity. Our results reinforce the potential of macroscopic superconducting qubits for the implementation of complex quantum operations with the possibility of quantum error correction.  相似文献   

8.
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols.  相似文献   

9.
以6粒子纠缠态为量子信道,提出了一个单粒子未知态的量子信息共享方案.首先信息发送者对手中的粒子进行 Bell 基测量和单粒子测量,接着合法双方的任意一方对自己拥有的粒子做一次单粒子测量,则另一方对自己拥有的粒子进行适当的幺正变换,就可以重建原始粒子态,从而实现了量子信息共享.该方案成功的概率为100;  相似文献   

10.
通过对Brown等人介绍的5粒子纠缠态的新应用研究,利用5粒子纠缠态作为量子信道提出了一个单粒子任意态的信息共享方案.首先,发送者对自己拥有的粒子做一次4粒子von-Neumann联合测量.然后,控制者对其拥有的粒子做单粒子测量.接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,就可以重建发送者的单粒子任意态.方案成功的概率为100%.  相似文献   

11.
利用共享的EPR纠缠和单个qubit量子态对量子动力学进行编程,提出一个可编程的量子处理器方案,实现对远程量子态的有限的系列操作. 进而讨论了利用线性光学元器件对该可编程门的物理实现方案.  相似文献   

12.
Yamamoto T  Pashkin YA  Astafiev O  Nakamura Y  Tsai JS 《Nature》2003,425(6961):941-944
Following the demonstration of coherent control of the quantum state of a superconducting charge qubit, a variety of qubits based on Josephson junctions have been implemented. Although such solid-state devices are not currently as advanced as microscopic qubits based on nuclear magnetic resonance and ion trap technologies, the potential scalability of the former systems--together with progress in their coherence times and read-out schemes--makes them strong candidates for the building block of a quantum computer. Recently, coherent oscillations and microwave spectroscopy of capacitively coupled superconducting qubits have been reported; the next challenging step towards quantum computation is the realization of logic gates. Here we demonstrate conditional gate operation using a pair of coupled superconducting charge qubits. Using a pulse technique, we prepare different input states and show that their amplitude can be transformed by controlled-NOT (C-NOT) gate operation, although the phase evolution during the gate operation remains to be clarified.  相似文献   

13.
Decoherence-protected quantum gates for a hybrid solid-state spin register   总被引:1,自引:0,他引:1  
Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing. An idle quantum bit (qubit) can be efficiently insulated from the outside world by dynamical decoupling, as has recently been demonstrated for individual solid-state qubits. However, protecting qubit coherence during a multi-qubit gate is a non-trivial problem: in general, the decoupling disrupts the interqubit dynamics and hence conflicts with gate operation. This problem is particularly salient for hybrid systems, in which different types of qubit evolve and decohere at very different rates. Here we present the integration of dynamical decoupling into quantum gates for a standard hybrid system, the electron-nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates using a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We also perform Grover's quantum search algorithm, and achieve fidelities of more than 90% even though the algorithm run-time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly allow decoherence-protected interface gates between different types of solid-state qubit. Ultimately, quantum gates with integrated decoupling may reach the accuracy threshold for fault-tolerant quantum information processing with solid-state devices.  相似文献   

14.
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention since the first demonstration of macroscopic quantum coherence in Josephson junction circuits. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen-vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3?×?10(7) such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.  相似文献   

15.
Chiorescu I  Bertet P  Semba K  Nakamura Y  Harmans CJ  Mooij JE 《Nature》2004,431(7005):159-162
In the emerging field of quantum computation and quantum information, superconducting devices are promising candidates for the implementation of solid-state quantum bits (qubits). Single-qubit operations, direct coupling between two qubits and the realization of a quantum gate have been reported. However, complex manipulation of entangled states-such as the coupling of a two-level system to a quantum harmonic oscillator, as demonstrated in ion/atom-trap experiments and cavity quantum electrodynamics-has yet to be achieved for superconducting devices. Here we demonstrate entanglement between a superconducting flux qubit (a two-level system) and a superconducting quantum interference device (SQUID). The latter provides the measurement system for detecting the quantum states; it is also an effective inductance that, in parallel with an external shunt capacitance, acts as a harmonic oscillator. We achieve generation and control of the entangled state by performing microwave spectroscopy and detecting the resultant Rabi oscillations of the coupled system.  相似文献   

16.
Coupling superconducting qubits via a cavity bus   总被引:2,自引:0,他引:2  
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.  相似文献   

17.
Cirac JI  Zoller P 《Nature》2000,404(6778):579-581
Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).  相似文献   

18.
Deterministic quantum teleportation of atomic qubits   总被引:2,自引:0,他引:2  
Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.  相似文献   

19.
Quantum entanglement distribution is an essential part of quantum communication and computation protocols. Here, linear optic elements are employed for the distribution of quantum entanglement over a long distance. Polarization beam splitters and wave plates are used to realize an error-free protocol for broadcasting quantum entanglement in optical quantum communication. This protocol can determine the maximum distance of quantum communication without decoherence. Error detection and error correc-tion are performed in the proposed scheme. In other words, if there is a bit flip along the quantum channel, the end stations (Alice and Bob) can detect this state change and obtain the correct state (entangled photon) at another port. Existing general error detec-tion protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Here we present a feasible scheme for the implementation of entanglement distribution based on a linear optics element that does not need a quantum CNOT gate.  相似文献   

20.
De Martini F  Buzek V  Sciarrino F  Sias C 《Nature》2002,419(6909):815-818
In classical computation, a 'bit' of information can be flipped (that is, changed in value from zero to one and vice versa) using a logical NOT gate; but the quantum analogue of this process is much more complicated. A quantum bit (qubit) can exist simultaneously in a superposition of two logical states with complex amplitudes, and it is impossible to find a universal transformation that would flip the original superposed state into a perpendicular state for all values of the amplitudes. But although perfect flipping of a qubit prepared in an arbitrary state (a universal NOT operation) is prohibited by the rules of quantum mechanics, there exists an optimal approximation to this procedure. Here we report the experimental realization of a universal quantum machine that performs the best possible approximation to the universal NOT transformation. The system adopted was an optical parametric amplifier of entangled photon states, which also enabled us to investigate universal quantum cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号