首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Adorini  E Appella  G Doria  F Cardinaux  Z A Nagy 《Nature》1989,342(6251):800-803
T cells recognize foreign proteins as peptides bound to self molecules encoded by the major histocompatibility complex (MHC). The kinetics of interaction between purified class II MHC molecules and peptides is unusual, in that the rate of association is very slow, but once formed, the complexes are extremely stable. This raises the question of how the antigen-presenting cell provides a sufficient number of free MHC binding sites to ensure T cell immunity. We present results suggesting that an exchange of peptide in MHC binding sites may take place under physiological conditions.  相似文献   

2.
Sequence analysis of peptides bound to MHC class II molecules.   总被引:38,自引:0,他引:38  
CD4 T cells recognize peptide fragments of foreign proteins bound to self class II molecules of the major histocompatibility complex (MHC). Naturally processed peptide fragments bound to MHC class II molecules are peptides of 13-17 amino acids which appear to be precessively truncated from the carboxy terminus, perhaps after binding to the MHC class II molecule. The finding of predominant self peptides has interesting implications for antigen processing and self-non-self discrimination.  相似文献   

3.
Physical association between MHC class I molecules and immunogenic peptides   总被引:5,自引:0,他引:5  
Antigenic peptides are presented to T lymphocytes by major histocompatibility complex (MHC) molecules. The binding of peptides to MHC class II molecules has been demonstrated directly, and is found to correlate with the ability of specific class II alleles to restrict the T-cell response to specific peptides. By comparison, a direct demonstration of a physical association between antigenic peptides and MHC class I molecules has proved difficult. A recent report shows that it is possible, however, and the three-dimensional structure of a class I MHC molecule illustrates the site where such binding must occur. Here we describe a simple assay which measures the binding of radiolabelled MHC class I molecules to peptides bound to a solid phase support. We find that class I molecules bind specifically to peptides known to be antigenic for class I-restricted cytotoxic T lymphocytes. Peptides which are recognized by cytotoxic T lymphocytes bind not only to the restricting MHC class I molecule but also to other class I molecules. Our results suggest that quantitative differences in the peptide/MHC class I interaction may influence the-pattern of MHC restriction observed in vivo.  相似文献   

4.
T cells recognize foreign protein antigens in the form of peptide fragments bound tightly to the outer aspect of molecules encoded by the major histocompatibility complex (MHC). Most of the amino-acid differences that distinguish MHC allelic variants line the peptide-binding cleft, and different allelic forms of MHC molecules bind distinct peptides. It has been demonstrated that peptide-binding to MHC class I involves anchor residues in certain positions and that antigenic peptides associated with MHC class I exhibit allele-specific structural motifs. We have previously reported an analysis of MHC class II-associated peptide sequences. Here we extend this analysis and show that certain amino-acid residues occur at particular positions in the sequence of peptides binding to a given MHC class II molecule. These sequence motifs require the amino terminus to be shifted one or two positions to obtain alignment; such shifts occur naturally for a single peptide sequence without qualitatively altering CD4 T-cell recognition.  相似文献   

5.
An ideal vaccine should elicit a long lasting immune response against the natural parasite, both at the T- and B-cell level. The immune response should occur in all individuals and be directed against determinants that do not vary in the natural parasite population. A major problem in designing synthetic peptide vaccines is that T cells generally recognize peptide antigens only in association with one or a few of the many variants of major histocompatibility complex (MHC) antigens. During the characterization of epitopes of the malaria parasite Plasmodium falciparum that are recognized by human T cells, we analysed a sequence of the circumsporozoite protein, and found that synthetic peptides corresponding to this sequence are recognized by T cells in association with many different MHC class II molecules, both in mouse and in man. This region of the circumsporozoite protein is invariant in different parasite isolates. Peptides derived from this region should be capable of inducing T-cell responses in individuals of most HLA-DR types, and may represent good candidates for inclusion in an effective anti-malaria peptide vaccine.  相似文献   

6.
Traffic of MHC molecules dictates the source of peptides that are presented to T cells. The intracellular distribution of MHC class I and class II molecules reflects the dichotomy in presentation of antigen from endogenous and exogenous origin, respectively. In human B lymphoblastoid cells, class I molecules are present in compartments constituting the biosynthetic pathway, whereas class II molecules enter structures related to lysosomes during their biosynthesis.  相似文献   

7.
T lymphocytes recognize antigen in the form of peptides that associate with specific alleles of class I or class II major histocompatibility (MHC) molecules. By contrast with the clear MHC allele-specific binding of peptides to purified class II molecules purified solubilized class I molecules either bind relatively poorly or show degenerate specificity. Using photo-affinity labelling, we demonstrate here the specific interaction of peptides with cell-associated MHC class I molecules and show that this involves metabolically active processes.  相似文献   

8.
M Peterson  J Miller 《Nature》1990,345(6271):172-174
Recent experiments have implicated intracellular events in the formation of the MHC class II-peptide complexes recognized by CD4-positive T cells. These data raise the possibility that the intracellular association of class II with the non-polymorphic glycoprotein, invariant chain (Ii), may regulate the interaction between processed antigen and MHC class II molecules. To address this possibility, we have generated a series of transfected fibroblast cell lines that express class II with and without Ii. Although the presence of Ii does not seem to affect the ability of the cells to process and present intact antigen, Ii-negative cells express an altered form of class II at the cell surface. This modified conformation of class II in Ii-negative cells is detectable by an increase in the ability to present antigenic peptides to T cells and a decrease in the binding of several class II-specific monoclonal antibodies.  相似文献   

9.
Serwold T  Gonzalez F  Kim J  Jacob R  Shastri N 《Nature》2002,419(6906):480-483
The ability of killer T cells carrying the CD8 antigen to detect tumours or intracellular pathogens requires an extensive display of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of potential target cells. These peptides are derived from almost all intracellular proteins and reveal the presence of foreign pathogens and mutations. How cells produce thousands of distinct peptides cleaved to the precise lengths required for binding different MHC class I molecules remains unknown. The peptides are cleaved from endogenously synthesized proteins by the proteasome in the cytoplasm and then trimmed by an unknown aminopeptidase in the endoplasmic reticulum (ER). Here we identify ERAAP, the aminopeptidase associated with antigen processing in the ER. ERAAP has a broad substrate specificity, and its expression is strongly upregulated by interferon-gamma. Reducing the expression of ERAAP through RNA interference prevents the trimming of peptides for MHC class I molecules in the ER and greatly reduces the expression of MHC class I molecules on the cell surface. Thus, ERAAP is the missing link between the products of cytosolic processing and the final peptides presented by MHC class I molecules on the cell surface.  相似文献   

10.
S Krishna  P Benaroch  S Pillai 《Nature》1992,357(6374):164-167
Purified major histocompatibility complex (MHC) class I molecules have been studied at high resolution by X-ray crystallography; the structure is a complex of a single heavy chain, a beta 2-microglobulin light chain and a tightly bound peptide moiety. We show here that complete MHC class I molecules are post-translationally assembled into tetramers (made up of four heavy chains and four beta 2-microglobulin units) and that this tetrameric species is expressed on the cell surface. The multivalent tetrameric structure of class I molecules can be reconciled with models of T-cell activation that invoke antigen-receptor crosslinking, as opposed to models that depend on an allosteric change.  相似文献   

11.
Intracellular transport of class II MHC molecules directed by invariant chain   总被引:23,自引:0,他引:23  
Three structural motifs in the invariant chain (li) control the intracellular transport of class II major histocompatibility complex molecules. An endoplasmic reticulum retention signal in the full-length li suggests a role for li in the alpha-beta heterodimer assembly. Another signal motif directs a truncated li, alone or associated with individual class II chains, to a degradation compartment by a pathway circumventing the Golgi. When this truncated li binds alpha-beta dimers, a third signal dominates, directing the complex by way of the Golgi to vesicles in the cell periphery, which may represent a subcompartment of recycling endosomes.  相似文献   

12.
Synthetic peptides have been used to sensitize target cells and thereby screen for epitopes recognized by T cells. Most epitopes of cytotoxic T lymphocytes can be mimicked by synthetic peptides of 12-15 amino acids. Although in specific cases, truncations of peptides improves sensitization of target cells, no optimum length for binding to major histocompatibility complex (MHC) class I molecules has been defined. We have now analysed synthetic peptide captured by empty MHC class I molecules of the mutant cell line RMA-S. We found that class I molecules preferentially bound short peptides (nine amino acids) and selectively bound these peptides even when they were a minor component in a mixture of longer peptides. These results may help to explain the difference in size restriction of T-cell epitopes between experiments with synthetic peptides and those with naturally processed peptides.  相似文献   

13.
Antigen processing provides major histocompatibility complex (MHC) class I molecules with short peptides, which they selectively bind and present to cytotoxic T lymphocytes. The proteolytic system generating these peptides in the cytosol is unidentified, but their delivery into the endoplasmic reticulum is mediated by the TAP1-TAP2 transporter encoded in the MHC class II region. Closely linked to TAP1 and TAP2 are genes for the LMP2 and LMP7 proteins, which resemble components of proteasomes, proteolytic complexes known to degrade cytosolic proteins. This association has led to the common assumption that proteasomes function in this immunological pathway (discussed in ref. 15). We now show that the expression of stably assembled class I molecules and apparently normal peptide processing can be completely restored in the absence of LMP2 and LMP7 in the human lymphoblastoid cell line mutant 721.174 (refs 16, 17). The identity of LMP7 is directly confirmed by reconstitution of a proteasomal subunit after gene transfer. These results therefore dispute the hypothetical involvement of proteasomes in antigen processing, although a more subtle effect of LMP2 and LMP7 cannot be ruled out.  相似文献   

14.
T lymphocytes expressing alpha beta receptors recognize antigenic peptide fragments bound to major histocompatibility complex class I or class II molecules present on the surface membranes of other cells. Peptide fragments are present in the two available HLA crystal structures and recent data indicate that peptide is required for the stable folding of the class I heavy chain and maintenance of its association with the class I light chain, beta 2-microglobulin (beta 2m), at physiological temperature. To explain how the exogenous peptide used to create targets for cytotoxic cells bearing CD8 antigen could associate with apparently peptide-filled extracellular class I molecules, we hypothesized that stable binding of exogenous peptide to mature class I molecules reflects either the replacement of previously bound peptide during the well documented beta 2m exchange process or the loading of 'empty' class I heavy chains dependent on the availability of excess beta 2m. In either case, free beta 2m should enhance peptide/class I binding. Using either isolated soluble class I molecules or living cells, we show here that free purified beta 2m markedly augments the generation of antigenic complexes capable of T-cell stimulation.  相似文献   

15.
Interaction between CD4 and class II MHC molecules mediates cell adhesion   总被引:89,自引:0,他引:89  
C Doyle  J L Strominger 《Nature》1987,330(6145):256-259
The CD4 glycoprotein is expressed on T-helper and cytotoxic lymphocytes which are restricted to class II major histocompatibility complex (MHC) antigens on target cells. Antibody inhibition studies imply that CD4 acts to increase the avidity of effector-target cell interactions. These observations have led to the speculation that CD4 binds to a monomorphic class II antigen determinant, thereby augmenting low affinity T-cell receptor-antigen interactions. However, no direct evidence has been presented indicating that CD4 and class II molecules interact. To address this issue, we have used a vector derived from simian virus 40 (SV40) to express a complementary DNA (cDNA) encoding the human CD4 glycoprotein. When CV1 cells expressing large amounts of the CD4 protein at the cell surface are incubated with human B cells bearing MHC-encoded class II molecules, they are bound tightly to the infected monolayer, whereas mutant B cells which lack class II molecules fail to bind. Furthermore, the binding reaction is specifically inhibited by anti-class II and anti-CD4 antibodies. Thus, the CD4 protein, even in the absence of T-cell receptor-antigen interactions, can interact directly with class II antigens to function as a cell surface adhesion molecule.  相似文献   

16.
L Karlsson  C D Surh  J Sprent  P A Peterson 《Nature》1991,351(6326):485-488
The repertoire of mature class II-restricted T cells is generated through a complex process of selection whereby early T cells confront class II molecules in the thymus, especially on epithelial cells. Expression of class II molecules on such cells is prominent both in the cortex and in the medulla. We have identified a novel class II molecule, H-20, which is expressed only in epithelial cells of the thymic medulla and in B cells. The unusual tissue distribution and the nonpolymorphic nature of H-20 suggest that its function is different from that of classical class II molecules.  相似文献   

17.
T-cell engagement of dendritic cells rapidly rearranges MHC class II transport   总被引:17,自引:0,他引:17  
Assembly of major histocompatibility complex (MHC) molecules, which present antigen in the form of short peptides to T lymphocytes, occurs in the endoplasmic reticulum; once assembled, these molecules travel from the endoplasmic reticulum to their final destination. MHC class II molecules follow a route that takes them by means of the endocytic pathway, where they acquire peptide, to the cell surface. The transport of MHC class II molecules in 'professional' antigen-presenting cells (APCs) is subject to tight control and responds to inflammatory stimuli such as lipopolysaccharide. To study class II transport in live APCs, we replaced the mouse MHC class II gene with a version that codes for a class II molecule tagged with enhanced green fluorescent protein (EGFP). The resulting mice are immunologically indistinguishable from wild type. In bone-marrow-derived dendritic cells, we observed class II molecules in late endocytic structures with transport patterns similar to those in Langerhans cells observed in situ. We show that tubular endosomes extend intracellularly and polarize towards the interacting T cell, but only when antigen-laden dendritic cells encounter T cells of the appropriate specificity. We propose that such tubulation serves to facilitate the ensuing T-cell response.  相似文献   

18.
Antigen presenting function of class II MHC expressing pancreatic beta cells   总被引:17,自引:0,他引:17  
Class II major histocompatibility complex (MHC) gene expression in the mouse is generally limited to thymic epithelium and bone marrow-derived cells such as B lymphocytes and cells of the macrophage/dendritic cell lineage (M phi/DC). Class II-bearing B lymphocytes and M phi/DC possess antigen presenting cell (APC) function; that is, they can stimulate T lymphocytes reactive to either antigen plus MHC or foreign MHC alone. To assess whether non-bone-marrow-derived cells can acquire APC function and elicit graft rejection through expression of class II, we studied transgenic pancreatic islet beta cells that express a foreign class II (I-E) molecule. In vivo, grafts of I-E+ transgenic islets into I-E- naive hosts are not rejected unless the host is primed by an injection of I-E+ spleen cells. In vitro, the I-E+ beta cells are unable to stimulate T lymphocytes reactive to I-E plus a peptide antigen. Paradoxically, they induce antigen specific unresponsiveness in the T cells. We propose that expression of class II on non-lymphoid cells may serve as an extrathymic mechanism for maintaining self tolerance.  相似文献   

19.
Empty MHC class I molecules come out in the cold   总被引:43,自引:0,他引:43  
Major histocompatibility complex (MHC) class I molecules present antigen by transporting peptides from intracellularly degraded proteins to the cell surface for scrutiny by cytotoxic T cells. Recent work suggests that peptide binding may be required for efficient assembly and intracellular transport of MHC class I molecules, but it is not clear whether class I molecules can ever assemble in the absence of peptide. We report here that culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19-33 degrees C) promotes assembly, and results in a high level of cell surface expression of H-2/beta 2-microglobulin complexes that do not present endogenous antigens, and are labile at 37 degrees C. They can be stabilized at 37 degrees C by exposure to specific peptides known to interact with H-2Kb or Db. Our findings suggest that, in the absence of peptides, class I molecules can assemble but are unstable at body temperature. The induction of such molecules at reduced temperature opens new ways to analyse the nature of MHC class I peptide interactions at the cell surface.  相似文献   

20.
Shin JS  Ebersold M  Pypaert M  Delamarre L  Hartley A  Mellman I 《Nature》2006,444(7115):115-118
Dendritic cells have a unique function in the immune response owing to their ability to stimulate immunologically naive T lymphocytes. In response to microbial and inflammatory stimuli, dendritic cells enhance their capacity for antigen presentation by a process of terminal differentiation, termed maturation. The conversion of immature to mature dendritic cells is accompanied by a marked cellular reorganization, including the redistribution of major histocompatibility complex class II molecules (MHC II) from late endosomal and lysosomal compartments to the plasma membrane and the downregulation of some forms of endocytosis, which has been thought to slow the clearance of MHC II from the surface. The relative extent to which these or other mechanisms contribute to the regulation of surface MHC II remains unclear, however. Here we find that the MHC II beta-chain cytoplasmic tail is ubiquitinated in mouse immature dendritic cells. Although only partly required for the sequestration of MHC II in multivesicular bodies, this modification is essential for endocytosis. Notably, ubiquitination of MHC II ceased upon maturation, resulting in the accumulation of MHC II at the cell surface. Dendritic cells thus exhibit a unique ability to regulate MHC II surface expression by selectively controlling MHC II ubiquitination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号