共查询到19条相似文献,搜索用时 46 毫秒
1.
讨论了非游荡集上的逐点伪轨跟踪性,证明了定义在紧度量空间上的连续满射若具有逐点伪轨跟踪性,那么它在非游荡集上的限制具有伪轨跟踪性. 相似文献
2.
讨论了无穷维Fréchet空间中的具有混沌性质的一类算子--非游荡算子.利用等价范数定理首次给出了判别一个线性算子是非游荡算子的判别方法--非游荡算子标准,然后利用这一标准证明了后移位算子B的解析半群T(t)=etB当t=1时是非游荡算子.最后运用泛函分析的方法得到了非游荡算子的性质若T关于E是非游荡算子,则Tm和T-m也是非游荡算子;若T在E1,E2上的限制T|E1,T|E2是非游荡算子,则当E1∩E2={0}时,T|E1(+)E2是非游荡算子. 相似文献
3.
4.
本文研究无穷维空间中一类具有混沌特性的算子:非游荡算子。主要结论是希尔伯特空间中移位算子及与它交换的算子,在常数意义下都是非游荡算子。并在非游荡集为紧集时,给出非游荡算子的超循环分解。 相似文献
5.
以构造的方式,研究了lp(1≤p∞)空间上的加权移位算子B,当其权序数满足一定条件时,具有非游荡性;证明了它经过一恒等算子扰动后,仍可保持这种特性;进而得到了Hilbert空间上的任一有界线性算子关于非游荡算子的分解理论. 相似文献
6.
在无穷维可分Banach空间中引进了无环条件和滤子的概念,给出了非游荡算子的滤子的例子,说明了基本集满足无环条件的非游荡算子是存在的,在此基础上给出了非游荡算子的拓扑稳定性定理。 相似文献
7.
Frechet空间上的非游荡算子的遗传超循环分解 总被引:3,自引:0,他引:3
混沌现象并非仅仅局限于非线性映射或算子,在无穷维空间中,某些线性映射或线性算子也有可能是混沌的,这是一个奇特的现象,这也使得混沌学的研究内容更为丰富,无穷维可分Frechet空间非游荡算子是一类具有混沌特征的线性算子,因而研究这类算子具有重要的意义,线性算子混沌要求其具有拓扑传递性,事实上拓扑传递性与超循环是一致的,而遗传超循环是更强的超循环,笔者首无给出超循环算子、混沌算子、遗传超循环算子以及非游荡算子的定义,列举了一个具体的非游荡算子,事实上文中列举的非游荡算子是线性混沌算子,再作出无穷维可分Frechet空间上的非游荡算子关于紧致集的遗传超循环分解。 相似文献
8.
提升系统的渐近伪轨跟踪性质 总被引:1,自引:0,他引:1
设X是紧致度量空间,f:X→X是连续映射,又设~↑X是X的覆叠空间,~↑f:~↑X→~↑X是f的提升映射。本文证明:(~↑X,~↑f)有渐近伪轨跟踪性质当且仅当(X,f)有渐近伪轨跟踪性质。 相似文献
9.
10.
混沌现象并非仅仅局限于非线性映射或算子 ,在无穷维空间中 ,某些线性映射或线性算子也有可能是混沌的 ,这是一个奇特的现象 ,这也使得混沌学的研究内容更为丰富 无穷维可分Fr啨chet空间上的非游荡算子是一类具有混沌特征的线性算子 ,因而研究这类算子具有重要的意义 线性算子混沌要求其具有拓扑传递性 ,事实上拓扑传递性与超循环是一致的 ,而遗传超循环是更强的超循环 笔者首先给出超循环算子、混沌算子、遗传超循环算子以及非游荡算子的定义 ,列举了一个具体的非游荡算子 ,事实上文中列举的非游荡算子是线性混沌算子 ,再作出无穷维可分Fr啨chet空间上的非游荡算子关于紧致集的遗传超循环分解 相似文献
11.
李思敏 《中国科学技术大学学报》2000,30(1):10-13
研究了一个动力系统能够被提升为Markov链的必要条件.证明了一个系统如果能够被特征映射提升为Markov链时,它必须是可扩的且具有伪轨追踪性. 相似文献
12.
李思敏 《中国科学技术大学学报》2000,(1)
研究了一个动力系统能够被提升为Markov链的必要条件 .证明了一个系统如果能够被特征映射提升为Markov链时 ,它必须是可扩的且具有伪轨追踪性 . 相似文献
13.
设(X,d)是紧致度量空间,f是X上的连续自映射,AP(f)、CR(f)分别表示f的几乎周期点集和链回归点集。证明了:如果f有伪轨跟踪性,那么f| ■:■→■也有伪轨跟踪性,并且CR(f)=■。 相似文献
14.
15.
对一个数列的奇子列和偶子列收敛且极限相等则原数列收敛的性质做了推广. 相似文献
16.
研究局部满射算子与局部扰动算子差的映射性质,并利用该性质得到离散方程组、迭代函数方程组、右端可化为有界的方程组、积分方程组及一些可化为积分方程组的方程组解存在的充分条件. 相似文献
17.
利用锥理论,单调迭代技巧以及谱半径的相关知识研究了一类非紧非连续减算子的不动点的存在、唯一性及迭代收敛,获得了新的结果.作为其应用重点讨论了非减算子方程解的存在唯一性,并给出了迭代序列收敛于解的误差估计,改进和推广了某些已知结果. 相似文献
18.
19.
黎日松 《太原理工大学学报》2007,38(3):278-282
设(X,d)是紧致度量空间,f:X→X是连续的,n为任一给定的正整数,证明了:f是链可迁的当且仅当fn是链可迁的;若同胚f是Lipschitz映射,则f有平均跟踪性当且仅当fn有平均跟踪性。设f是个同胚映射,得到了如下结果:若f有POTP且是distal的,则fn不具有平均跟踪性;若f有平均跟踪性且是等度连续的,则fn是极小的;若f是distal的且是链可迁的,则fn不具有POTP;f是distal的当且仅当fn是distal的。同时,还给出了例子:设S={0,1,…,k-1},σ∶∑(S)→∑(S)(resp.σ∶∑ (S)→∑ (S))为符号空间上的移位自映射,则nσ(resp.nσ )有平均跟踪性. 相似文献