首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work presents an overview of Brazil’s scientific heritage, especially the collections and sets of artefacts related to the exact sciences and engineering. The information provided is the outcome of a survey being undertaken on a national level under the coordination of Museu de Astronomia e Ciências Afins (Museum of Astronomy and Related Sciences, or MAST), which is leading teams from five Brazilian universities. Sets of objects have been identified at museums, universities, military establishments, and some secondary schools. The best preserved collections are at a few museums, but the universities hold most of the artefacts. The overwhelming majority of the objects were made in the twentieth century, primarily the second half. After the general results of the survey are presented, details about a few sets of objects and collections are given, including information about their current state, the provenance of the objects and the history of the institutions. The objective of this initiative is to raise the awareness of the Brazilian state so that a policy is created for preserving this heritage and financing mechanisms to assure it can be researched, conserved, and ultimately fulfil its mission in society.  相似文献   

2.
Scientific heritage can be found in every teaching and research institution, large or small, from universities to museums, from hospitals to secondary schools, from scientific societies to research laboratories. It is generally dispersed and vulnerable. Typically, these institutions lack the awareness, internal procedures, policies, or qualified staff to provide for its selection, preservation, and accessibility. Moreover, legislation that protects cultural heritage does not generally apply to the heritage of science. In this paper we analyse the main problems that make scientific heritage preservation so difficult to address. We discuss the concept and present existing preservation tools, including recent surveys, legislation, policies, and innovative institutional approaches. We briefly analyse two recent initiatives for the preservation of scientific heritage, at the Universities of Lisbon and Cambridge.  相似文献   

3.
4.
5.
6.
For many years, scientific heritage has received attention from multiple actors from different spheres of activity—archives, museums, scientific institutions. Beyond the heterogeneity revealed when examining the place of scientific heritage in different places, an authentic patrimonial configuration emerges and takes the form of a nebula of claims and of accomplishments that result, in some cases, in institutional and political recognition at the national level, in various country all around the world. At the international level, the creation of the international committee dedicated to University Museums and Collections (UMAC) within the International Council of Museums (ICOM) certainly testified from this raising interest in academic heritage and the existence of a specific community concern with it.This article presents numerous initiatives for the preservation of scientific heritage in France, with the goal of analysing the relationship scientists have with their heritage. We argue that scientific communities have a special relationship with heritage, which is characterized by a number of ambiguities. We show that such ambivalences allow analysis of identity, discipline, professional, and social issues operative in defining heritage and being redefined by heritage. To explore these dimensions, we have chosen to present three different case studies. The first traces the institutional uses of heritage by a scientific institution, the Commissariat à l’énergie atomique (CEA), through the transformation of the first French atomic reactor (ZOE) into a museum. The second example describes the initiatives of French astronomers from the mid-1990s to construct a national programme for the protection of astronomy heritage. Lastly, we recount the case of universities, with the example of the Université de Strasbourg.  相似文献   

7.
The bulk of the significant recent scientific heritage of universities is not to be found in accredited science museums or collections employed in research. Rather it is located in a wide variety of more informal collections, assemblages and accumulations. The selection and documentation of such materials is very often unsystematic and many of them are vulnerable to changes of staff, relocation and, above all, shortage of space. Following a survey of views on the values of the recent material heritage of the sciences, I consider the many advantages—for teaching, engagement with wider communities, enhancement of institutional identity and work experience, celebration of scientific achievements, study of the recent history of the practices and fruits of the sciences, etc.—of “multi-site museums” formed through the coordination of such varied and scattered collections. I go on to reflect on ways in which the preservation and display of scientific heritage in dispersed collections may be enhanced and protected through institutional recognition and through provision of guidance and assistance in selection, documentation and digitisation, preservation and conservation, and display. The importance of adequate documentation of the contexts of production and use of objects is stressed, as are the benefits that can result from involvement of student “taskforces” and heritage-concerned scientists.  相似文献   

8.
9.
According to the foundationalist picture, shared by many rationalists and positivist empiricists, science makes cognitive progress by accumulating justified truths. Fallibilists, who point out that complete certainty cannot be achieved in empirical science, can still argue that even successions of false theories may progress toward the truth. This proposal was supported by Karl Popper with his notion of truthlikeness or verisimilitude. Popper’s own technical definition failed, but the idea that scientific progress means increasing truthlikeness can be expressed by defining degrees of truthlikeness in terms of similarities between states of affairs. This paper defends the verisimilitude approach against Alexander Bird who argues that the “semantic” definition (in terms of truth or truthlikeness alone) is not sufficient to define progress, but the “epistemic” definition referring to justification and knowledge is more adequate. Here Bird ignores the crucial distinction between real progress and estimated progress, explicated by the difference between absolute (and usually unknown) degrees of truthlikeness and their evidence-relative expected values. Further, it is argued that Bird’s idea of returning to the cumulative model of growth requires an implausible trick of transforming past false theories into true ones.  相似文献   

10.
11.
In a number of papers and in his recent book, Is Water H2O? Evidence, Realism, Pluralism (2012), Hasok Chang has argued that the correct interpretation of the Chemical Revolution provides a strong case for the view that progress in science is served by maintaining several incommensurable “systems of practice” in the same discipline, and concerning the same region of nature. This paper is a critical discussion of Chang's reading of the Chemical Revolution. It seeks to establish, first, that Chang's assessment of Lavoisier's and Priestley's work and character follows the phlogistonists' “actors' sociology”; second, that Chang simplifies late-eighteenth-century chemical debates by reducing them to an alleged conflict between two systems of practice; third, that Chang's evidence for a slow transition from phlogistonist theory to oxygen theory is not strong; and fourth, that he is wrong to assume that chemists at the time did not have overwhelming good reasons to favour Lavoisier's over the phlogistonists' views.  相似文献   

12.
本文分析了西藏自治区在新形势下的科技发展的规划,应用统计方法对科技各个方面的可持续发展问题进行了评价研究。  相似文献   

13.
14.
众所周知,科学技术在人类历史上概括地说表现为两大功能:改造自然、改造社会、发展经济的生产力功能和表现为科学思想、科学方法、科学精神的认识功能.  相似文献   

15.
What is scientific progress? On Alexander Bird's epistemic account of scientific progress, an episode in science is progressive precisely when there is more scientific knowledge at the end of the episode than at the beginning. Using Bird's epistemic account as a foil, this paper develops an alternative understanding-based account on which an episode in science is progressive precisely when scientists grasp how to correctly explain or predict more aspects of the world at the end of the episode than at the beginning. This account is shown to be superior to the epistemic account by examining cases in which knowledge and understanding come apart. In these cases, it is argued that scientific progress matches increases in scientific understanding rather than accumulations of knowledge. In addition, considerations having to do with minimalist idealizations, pragmatic virtues, and epistemic value all favor this understanding-based account over its epistemic counterpart.  相似文献   

16.
研究意识问题的自然科学途径   总被引:6,自引:0,他引:6  
本文综述了用自然科学途径研究意识问题的一些重要文献、著作,列出意识问题的一些主要观点,并指出当前研究的几个热点。作者认为现在是用多学科研究意识问题的时候了。  相似文献   

17.
18.
Coping with recent heritage is troublesome for history of science museums, since modern scientific artefacts often suffer from a lack of esthetic and artistic qualities and expressiveness. The traditional object-oriented approach, in which museums collect and present objects as individual showpieces is inadequate to bring recent heritage to life. This paper argues that recent artefacts should be regarded as “key pieces.” In this approach the object derives its meaning not from its intrinsic qualities but from its place in an important historical event or development. The “key pieces” approach involves a more organic way of collecting and displaying, focussing less on the individual object and more on the context in which it functioned and its place in the storyline. Finally, I argue that the “key pieces” approach should not be limited to recent heritage. Using this method as a general guiding principle could be a way for history of science museums to appeal to today’s audiences.  相似文献   

19.
南极大气科学考察与研究   总被引:2,自引:0,他引:2  
我国的南极实地考察始于1980年,近20余年来有较大的进展。南极大气科学考察与研究是南极科学研究的重要组成部分,本文从大气科学角度阐述了南极大气科学考察与研究的意义,回顾了国内外南极气象及大气科学考察历史与现状,介绍了国外南极大气科学研究概况及近年来我国南极大气科学在全球变化研究方面的新进展,展望了南极大气科学研究的发展方向。  相似文献   

20.
This paper reconsiders the challenge presented to scientific realism by the semantic incommensurability thesis. A twofold distinction is drawn between methodological and semantic incommensurability, and between semantic incommensurability due to variation of sense and due to discontinuity of reference. Only the latter presents a challenge to scientific realism. The realist may dispose of this challenge on the basis of a modified causal theory of reference, as argued in the author’s 1994 book, The incommensurability thesis. This referential response has been the subject of a charge of meta-incommensurability by Hoyningen-Huene et al. (1996), who argue that the realist’s referential response begs the question against anti-realist advocates of incommensurability. In reply, it is noted that a tu quoque rejoinder is available to the realist. It is also argued that the dialectical situation favours the scientific realist, since the anti-realist defence of incommensurability depends on an incoherent distinction between phenomenal world and world-in-itself. In light of such incoherence, and a strong commonsense presumption in favour of realism, the referential response to semantic incommensurability may be justifiably based on realism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号