首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 56 毫秒
1.
采用草酸铵共沉淀-高温固相烧结法合成了高电压尖晶石正极材料LiNi0.5Mn1.5O4及其掺杂改性材料LiNi0.4Mg0.1Mn1.5O4.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电测试等对所合成样品进行表征.XRD测试表明所合成的样品具有尖晶石结构,空间群为Fd3m.电化学测试表明,样品有两个主放电平台,分别为4.7V和4.1V.经过800℃煅烧的样品LiNi0.5Mn1.5O4具有最好的倍率性能.经过900℃煅烧的样品具有最好的循环性能,以0.1C充放电,最高放电比容量达到124.2mAh.g-1,循环30次后容量保持率达92.7%.Mg掺杂的改性样品LiNi0.4Mg0.1Mn1.5O4在0.1C倍率下循环30次后容量保持率达95.7%,Mg的掺杂可以提高该材料的循环性能.  相似文献   

2.
运用溶胶-凝胶法成功合成了层状锂离子电池正极材料LiNi0.5Mn0.5O2的纳米粒子,并利用XRD,TEM,SEM手段进行了表征,电化学测试性能满意.在电压范围为2.5-4.5 V和电流密度为0.1 mA·cm-2的条件下,该正极材料能释放出159.8 mA h·g-1/Li的容量.  相似文献   

3.
用共沉淀法合成了Li Ni0.5Mn0.5O2材料.为了探索共沉淀法合成Li Ni0.5Mn0.5O2的最佳工艺,详细研究了研磨时间、pH值、预处理温度、煅烧温度、煅烧时间和冷却方式等对材料结构的影响.以氢氧化锂为锂源,Ni(NO3)2.6 H2O和Mn(Ac)2.4 H2O为镍源和锰源,锂与镍、锰物质的量比为1.1∶0.5∶0.5,经强氧化剂处理,900℃下煅烧12 h后经淬冷制备了Li Ni0.5Mn0.5O2样品.采用XRD,Raman和XPS对该样品进行了分析,结果表明:材料为标准的α-NaFeO2层状结构,属于六方晶系;镍以正二价的形式存在,锰主要以正四价存在,非常接近理论计算的理想结构.  相似文献   

4.
首次利用海藻酸为模板剂,辅助合成了Fd3m空间群结构的锂电正极材料Li Ni0.5Mn1.5O4,同时分析了其结构、形貌及电化学性能等.与普通共沉淀法相比,海藻酸辅助制备的样品表现出了良好的形貌特征和电化学性能.X射线衍射(XRD)和扫描电子显微镜(SEM)观察的结果表明:制备的材料结晶度较高,颗粒晶型完整并达到微-纳级别.充放电测试结果表明:0.2C第一次放电表现出127.8 m Ah/g的比容量,且50次循环保持率在99%以上.同时,循环伏安(CV)和交流阻抗(EIS)测试结果可很好的解释其容量较高的原因.  相似文献   

5.
采用喷雾干燥方法合成了高电压锂离子电池正极材料LiMn 1.5Ni 0.5O4,并研究了其电化学性能.研究发现,室温条件下,在3.20~4.95 V的充放电电压范围,LiMn 1.5Ni 0.5O4的首次可逆容量为132 mAh/g, 并显示出良好的循环性能,在3.20~4.50 V 和4.50~4.95 V两个电压区间内,首次可逆容量分别为25和100 mAh/g.而在高温下,该电极材料的电化学性能发生了明显的改变.  相似文献   

6.
采用乙二醇为溶剂以流变相法合成物相纯净、结晶度高、粒径均匀的立方尖晶石结构的锂离子电池高压正极材料LiNi0.5Mn1.5O4.电化学测试表明:样品具有4.7V的充放电电压平台,在0.5C倍率电流下,80次循环后可逆容量还有127.7 mAh·g-1,容量保持率超过98%,并且经过活化后样品循环的库仑效率基本都保持在98%以上,样品具有较大的可逆容量、极其优秀的循环稳定性和充放电可逆性,这主要是由于样品的高结晶度和较好的颗粒分散性.  相似文献   

7.
发展了一种新颖、简单且普适性很强的制备柔性无支撑的电极薄膜方法,并成功地组装和测试了LiMn2O4/Li4Ti5O12,LiNi0.5Mn1.5O4/Li4Ti5O12以及LiNi0.5Mn1.5O4/石墨3种全电池.以这种方法制备的锂离子电池具有能量密度高的特点,在某些特定的领域具有潜在的应用前景.此外,这种技术还有可能应用于锂离子电池的原位光谱分析.  相似文献   

8.
采用溶胶-凝胶法制备了LiNi0.5Mn1.5-xTixO4,研究了材料结构和电化学性能. 电化学测试表明,当掺钛量为0.3时,材料具有较好的循环性能,在0.1 C,0.5 C和1 C充放电时,容量分别为134 mAh/g,127 mAh/g和76 mAh/g. 循环伏安测试显示,4.2 V和4.85 V出现2个氧化峰,在4.56 V和3.88 V出现2个还原峰,证实此材料中Mn存在+3和+4混合价态.  相似文献   

9.
通过共沉淀-高温固相法合成LiNi0.2Li0.2Mn0.6O2固溶体正极材料,并通过球磨-低温热解对LiNi0.2Li0.2Mn0.6O2进行碳包覆;通过XRD,SEM和TEM对包覆前后的样品进行分析和表征.结果表明:球磨包覆前后样品具有层状固溶体结构,但包覆后颗粒粒径有所减小;包覆后LiNi0.2Li0.2Mn0.6O2 0.1C的放电比容量由包覆前的219 mA·h/g增加到246 mA·h/g,5C的放电比容量由包覆前的60 mA·h/g增加到包覆后的125 mA·h/g.50次循环后容量保持率由94.7%提高至97.8%.包覆后正极材料电荷转移阻抗从原来的62 Ω减小至37 Ω.  相似文献   

10.
采用固相法制备出镍钴锰三元氧化物Li Ni0.5Co0.2Mn0.3O2的单晶材料,然后,进行镁、钛掺杂处理。采用XRD,SEM和恒流充放电等测试手段对材料的晶体结构、形貌和电化学性能等进行研究。测试结果表明,材料形成形貌良好的单晶颗粒,且经过镁、钛掺杂处理后的材料单晶形貌没有改变。掺杂镁、钛后,材料的电化学性能得到明显的改善,Li Ni0.5Co0.2Mn0.3O2的单晶材料掺杂镁、钛后容量从159.59 m Ah/g提升到162.57 m Ah/g,做成全电池后,2 C的放电效率从79.6%提高到了87.3%,1 C下循环300圈后的容量保持率从84.89%提高到92.9%。  相似文献   

11.
12.
LiNi0.5Co0.5O2的制备及其电化学性能   总被引:2,自引:2,他引:2  
分别以碳酸盐和氢氧化物为原料,合成了LiNi0.5Co0.5O2.研究结果表明:用氢氧化物为原料,在氧气气氛中,适当提高合成温度和延长反应时间均有利于LiNi0.5Co0.5O2晶格结构的完整;在740 ℃和氧气气氛下,以氢氧化物为原料反应15 h可以合成结构理想的LiNi0.5Co0.5O2;LiNi0.5Co0.5O-2的初始放电容量与LiCoO2的初始放电容量相当,达到141.3 mA·h/g,以LiNi0.5Co0.5O2为正极的电极系统具有稳定的电压输出和良好的循环性能,经200次循环后放电容量保持率为82%,可作为LiCoO2的廉价替代物.  相似文献   

13.
采用固相法、共沉淀法和燃烧法分别合成出了LiNi0.5Mn0.5O2正极材料粉,利用XRD、SEM和扣式电池测试对材料的结构、形貌和电化学性能进行了表征. 结果表明:固相法产物有杂相出现,共沉淀法产物球形度较好,燃烧法颗粒较细,电性能最好,首次放电比容量为145.5 mAh/g(2.75~4.3 V).  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号