首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用现有的双P型辐射管进行燃烧实验,并进行相应的CFD仿真对比,结果显示NOx体积分数的数值计算与试验结果误差最大为3.6%,其他参数的偏差均在1%以内.将空气分级的理念应用于双P型辐射管,设计一种带支管的分区分级燃气辐射管,并对其流动和传热特性进行仿真研究.结果表明:支管通入空气量占总空气量的25%时,辐射管壁面温差最大,热效率最高;支管通入燃气量为20%时,辐射管壁面温差最小,壁面温度均匀性最好;支管以相同空燃比同时通入空气和燃气,且支管通入空燃气量为总燃气量的25%时,整个辐射管内气体温度分布最均匀;支管通入空燃气量占总气体量从5%增加到35%的过程中,壁面温差先降低后缓慢增加,支管通入燃气量为20%时辐射管壁面温差最小.  相似文献   

2.
为了研究制冷剂R410A在5 mm内螺纹铜管内的沸腾换热及压降特性,以磁驱泵提供循环动力、均匀缠绕在测试段上的电加热丝提供热量以及冷水机组提供循环冷量的方式搭建了测试实验台,并对R410A在5 mm内螺纹管内的流动沸腾换热系数及压降进行了测试.分析讨论了不同蒸发温度下,制冷剂质量流量密度和管壁热流密度对管内制冷剂流动沸腾换热系数以及压降特性的影响.研究结果表明:5mm内螺纹管内R410A的流动沸腾换热系数分别在质量流量密度位于191.28和344.3kg/(m2·s)处达到峰值;其流动沸腾换热系数随着管壁热流密度增大最初呈现增大的趋势,在热流密度30 kW/m2后逐渐平稳;而R410A在5 mm内螺纹管内的压降均随质量流量密度和管壁热流密度的增大而增大,其中压降和管壁热流密度的关系呈较为明显的线性变化.  相似文献   

3.
夏全忠 《科学技术与工程》2012,12(10):2368-2374,2390
为了提高涡轮叶片内冷通道流动传热计算精度,首先讨论了大温差下空气物性不同计算方法间的差异,并通过与管内常用传热经验关系式结果的对比,研究了不同定性温度取值方法和湍流模型对数值模拟结果的影响。在此基础上侧重研究了大温差对光滑圆形内冷通道内的流动传热的影响,温度比变化范围0.5~0.9,通道Re数范围20 000~60 000,得到了传热Nu数和温度修正因子随温度比与Re数的变化数据和拟合关系式。结果表明采用截面平均流体温度定义传热系数和采用Realizable k-ε湍流模型可使局部和平均传热系数与Gnielinski公式结果符合良好。大温差对通道传热的影响显著,Nu数最大降幅可达30%。计算显示温度修正因子随温度比的减小而减小,随Re数的增大而减小。  相似文献   

4.
水平圆管在大空间内自然对流换热的实验与数值分析   总被引:1,自引:0,他引:1  
通过实验与数值计算相结合的方法,对大空间水平圆管的自然对流换热过程进行研究.实验得出圆管自然对流换热系数随管壁温度的升高而增大,并拟合了实验条件下的自然对流换热实验关联式.以Fluent为平台,对水平圆管在大空间内的自然对流换热进行数值分析.结果表明,自然对流换热强弱取决于圆管壁面与周围流体温差的大小,温差越大,自然对流流动发展越快,最大流速越大,圆管周围空气在温差产生的浮升力驱动下形成不断上升的气流.  相似文献   

5.
采用数值模拟方法,对层流状态下内置偏心螺旋扭带的管内流动特性进行了研究。结果表明:螺旋扭带的偏心放置改变了管内流场的对称结构,轴向速度极值出现在扭带与管壁最大环空间隙中间,径向速度和周向速度极值出现在扭带圆周范围内的扭带两侧;轴向和径向速度极值随着扭带偏心率的增大而提高,而周向速度极值随着扭带偏心率的增大而减小;流体在偏心螺旋扭带作用下会形成一个围绕其轴线同向旋转的强制涡,当螺旋扭带靠近管壁时,该强制涡又会带动其外围流体旋转流动,形成一个与强制涡旋向相反的诱导涡;管内压力降随扭带偏心率及扭率的增大而减小,随扭带宽度及雷诺数的增大而增大;螺旋扭带的偏心放置促进了流体的径向流动,降低了流动阻力,有利于边界层内流体的扰动和更新。  相似文献   

6.
建立了大尺度引射进气风室试验装置,以精确测量排气引射-混合器的引射流量,采用辅助风机补风以调整并逼近实际引射进口压力,从而提高了引射流量的测量精度,采用3种直径的混合管对轴对称排气引射-混合器的引射流量特性进行对比研究,并结合射流理论对其流动状态加以分析.结果表明:在主流喷管直径一定而混合管直径(D2)不同的条件下,混合管内的流动状态有所不同;当D2=250 mm时,混合管内的流动为过度发展状态,随着主喷管与混合管间距离(a)增大,射流半厚度经扩展后过早附着在混合管壁,其引射系数和引射流量随a值增加而增大,当增至最大值后逐渐减小,随着主流流量的增加,引射流量增大而引射系数变化不大;当D2=300 mm时,混合管内的流动为充分发展状态,随着a值增大,射流半厚度经扩展后在a=300 mm时恰好在混合管出口处附着于混合管壁,其引射系数和引射流量随a值的增幅逐渐变缓;当D2=350 mm时,混合管内的流动为欠发展状态,随着a值增大,射流半厚度经扩展后在混合管出口处仍未附着于混合管壁,引射系数和引射流量随a值增加而增大.  相似文献   

7.
为研究孔隙率阶梯分布多孔介质内传热及流动,采用局部热平衡假设,考虑流体密度随温度变化,引入Brinkman-Forchheimer的扩展Darcy模型进行修正,建立水平方向孔隙率阶梯分布多孔介质自然对流数值模型,采用有限体积法进行计算.对数值模型进行实验验证,分析出孔隙率阶梯分布对传热及流动的影响.综合数值计算和实验结论表明:相同温差条件下,大孔隙率侧为高温壁面时对流传热达到稳态的时间比小孔隙率侧为高温壁面时要短;流体速度场分布主要受孔隙率分布影响,最大流速随温差和Ra增大而增大,且最大流速出现在大孔隙率靠近壁面处,与是否靠近高、低温壁面无关;高温壁面平均努谢尔数u随着Ra增大而增大,当lgRa4时,Ra的增加对u的变化影响较小.  相似文献   

8.
为了更好地研究LNG浸没燃烧式气化器管内流体的流动传热特性,建立了浸没燃烧式气化器管内高压天然气升温跨临界流动传热过程的数值模型,对其轴向与环向的流动传热特性及操作参数的影响进行相关研究,并将模拟结果与现有管内超临界流体传热的关联式进行对比。发现管内传热系数随换热管长先增大后减小,在拟临界点位置达到峰值,且弯头处出现局部传热强化;提高管内质量流量能够显著强化管内传热,但流体跨临界位置也会相对延后;提高管程入口温度和水浴温度均使流体跨临界位置提前,而较高的水浴温度会使传热系数峰值偏低;模拟结果与现有传热关联式的对比结果发现,JacksonHall公式更能准确预测超临界天然气在蛇形盘管内的传热特性,但不能体现弯头处的局部传热强化。研究结果为浸没燃烧式气化器的设计工作提供了依据。  相似文献   

9.
对柱坐标系下泡沫流体运动方程和能量方程进行简化,结合幂律流体本构方程并将其离散,运用有限差分方法对方程进行求解,得到幂律流体在内管旋转下放环空中的水力参数分布.结果表明:随内管转速的增大,环空中幂律流体的轴向流速、角速度、合速度增大,温度升高,表观黏度降低;随内管下放速度增加,环空中幂律流体的轴向流速、角速度和合速度减小,表观黏度增大,内管壁附近温度升高而外管壁附近温度降低.  相似文献   

10.
不同雷诺数下90°弯管内流动特性的数值研究   总被引:2,自引:0,他引:2  
运用FLUENT软件中的RNGk-ε模型对不同Re下圆形截面90°弯管内空气流动进行了模拟,分析了管内压力分布、二次流动和壁面上压力系数的变化,研究了Re不同时对壁面压力系数的影响.发现在气流进入弯管段后,流场由于流体惯性和分子黏性的相互作用,各个截面上出现了对称的二次流涡对.随Re增大,流体对于管道壁面的压力增大,管内压力损失也在增大.管道壁面上的压力系数随Re的不同差别不大,Re越大,压力系数越小,并且管道外壁面变化比内壁面更加明显.湍流时压力系数沿程变化比层流明显很多,曲率的影响也要强于层流.  相似文献   

11.
对层流管内受迫流动热入口段内流体与管壁间耦合传热进行了计算,研究了试件几何尺寸、试件与流体物性参数及流体流动状态对内管壁处流体热边界条件均匀性的影响。研究结果表明,在管外壁均匀加热(或冷却)的情况下,管壁导热也使得内管壁处流体的热边界条件出现明显的不均匀性。影响这种不均匀性的主要因素是Peclet数、管壁材料的相对导热系数、实验段相对热长度及管壁相对厚度等无量纲参数。为了改善管内壁处流体的热边界条  相似文献   

12.
为了确定低温多效蒸发(LT-MED)海水淡化装置中流动阻力对传热温差的影响,基于考虑阻力损失的LT-MED热力过程数学模型,计算了各项流动阻力引起的温差损失在装置各效蒸发/冷凝器中的分布,分析了蒸发/冷凝器数量、平均表观传热温差对阻力引起的传热温差损失的影响。结果表明:平均表观传热温差一定时,每效蒸发/冷凝器内各项阻力随蒸发/冷凝器序列数的增加先减小后增大,相应温差损失逐渐增大;随蒸发/冷凝器数量增加,管内凝结和除沫器流动阻力引起的温差损失所占比例均上升,而管束流动阻力呈下降趋势;装置中阻力引起的传热温差损失比例随蒸发/冷凝器数量增加、平均表观传热温差增大而增大,且相当可观,对装置性能的影响不可忽视。  相似文献   

13.
唐酞峰 《攀枝花学院学报》2007,24(6):113-116,121
在对管内流体与管壁的对流传热过程研究及工程应用中,对流给热系数(h)是一个重要的参数,给热系数h大小主要取决于流体的物性参数及流动状态。本文针对管内流体在非常缓慢流动,且流动状态不变条件下,实验研究了流体温度对给热系数的影响。得出管内流体在雷诺数Re=6下的给热系数h受到了流体温度的显著影响;流体温度升高,给热系数增大。管内流体的给热系数h与流体温度T呈拟线性关系,具体的实验数学模型为:h(T)=-18.89 0.8783T。  相似文献   

14.
针对方管内空气混合对流时的流固耦合换热问题,提出将壁面导热作为边界条件进行处理的壁面导热与流动耦合简化计算方法,推导了计算公式,并采用SIMPLER算法进行了数值模拟.算法忽略壁面沿厚度方向的导热,假设管壁温度沿轴向一维分布,采用热量平衡法建立边界单元的能量守恒方程,将固体区域的导热简化为流体区域的边界条件,以提高计算的精度和可靠性.计算结果表明,受二次流影响,沿通道周向热量从加热面同时沿顺时针和逆时针方向迅速向两边传递,各壁面最大温差小于0.5℃,在轴向归一化长度为2~4时壁面轴向导热热流密度出现最值.平均Nusselt数Num随Reynolds数Re及方管倾斜角度θ的增大而增大,最优倾角在-30°和0°之间变化,但当Re>1 500时,Num随θ的变化近似保持不变.计算结果与实验数据吻合良好,最大偏差小于±28.7%.  相似文献   

15.
将燃煤链条炉改烧低浓度煤层气,运用数值模拟方法并结合实验对改造后的低浓度煤层气锅炉炉膛内的流动、燃烧及NOx排放特性进行了研究。结果表明,速度约在炉膛轴向距喷口0.5 m处达到最大值,在炉膛宽度方向-0.4 m相似文献   

16.
支路数对热泵空调中冷凝和蒸发两用换热器性能的影响   总被引:1,自引:0,他引:1  
在空气的进口状态和流量、换热器的几何结构尺寸、管路排布方式等相同时,研究了支路数对蒸发和冷凝两用换热器流动与传热性能的影响规律.结果表明:随支路数增多,空气与制冷剂间的传热温差会增大,但总传热系数却会变小;室内换热器作蒸发器时,换热量先升后降,最小值比最大值小23.2%,存在使换热量最大的最佳支路数,在支路数小于或大于最佳支路数时,换热量的主导因素分别为传热温差与总传热系数;室内换热器作冷凝器时,换热量随支路数增多单调递减,最小值比最大值小40.55%,总传热系数始终是制约换热量的主导因素.因此,为协调并同时提高制冷、制热循环的效率,需要优化热泵系统中换热器的支路数.  相似文献   

17.
建立幂律流体环空内层流脉动流的数学模型,采用SIMPLE算法进行数值求解,得到幂律流体环空脉动层流的流动特性。结果表明:幂律流体环空脉动流的流动特性与稳态流动时差异较大;环空脉动流在距入口非常短的一段距离内就可达到充分发展,且不同时刻的入口段长度随时间而变化;低脉动频率下速度分布曲线类似于稳态时的抛物形分布,高频率下壁面附近的速度分布曲线发生扭曲,振荡速度的最大值出现在壁面附近;内、外壁面的摩擦系数和轴向压力梯度均近似满足正弦变化规律,脉动频率、振幅和流体流性指数的增加均会使壁面摩擦系数和轴向压力梯度及其变化幅度增大。  相似文献   

18.
在定容燃烧弹中采用高速纹影摄像方法研究了不同当量比(φ=0.8~1.4)和初始温度(373K,423 K,473 K)下高辛烷值燃料-空气预混合气的层流燃烧特性,分析了当量比和初始温度对燃烧的影响.结果表明:拉伸火焰传播速率、无拉伸火焰传播速率、拉伸层流燃烧速率和无拉伸层流燃烧速率随着初始温度的增加而增加,无拉伸层流燃烧速率在φ=1.0~1.1附近有最大值;马克斯坦长度随初始温度的增加而增加,随当量比的增加而减小;燃烧压力峰值与混合气质量的比值在φ=1.1时出现最大值,初始温度增加,该比值相应增加.  相似文献   

19.
结合燕山水库进水塔施工方案,应用有限元软件ANSYS,对其施工过程进行了仿真分析.分析表明:施工期混凝土最大温升为29.934℃,浇注后3-4 d即达到峰值,最大温差均不超过24℃.温度应力随着温差的增大而增大,温度应力最大值1.68 MPa,出现在两层混凝土浇筑的接触面,由浇筑时产生的瞬时温差引起.  相似文献   

20.
目前CO2已经被用作有效的驱油剂,CO2到达井底时的热力状态对驱油效果有较大影响.针对影响井底CO2压力和温度的因素,根据液态CO2在竖直井筒中的热量传递原理和流体流动理论,在Ramey建立的物理模型基础上,建立了液态CO2井筒流动与传热数学模型,通过求解实例,得到井筒内液态CO2温度和压力的分布规律以及各因素对井底CO2参数的影响.结果表明:井筒内CO2的温度和压力随井深的增加而近似成线性增加;当注入速率增大时,气液分界面加深;井底温度随入口流量的增加而降低,而受入口温度的影响较小;井底压力随井口注入压力的增加而成比例增加,随着流量的增加呈先增后减的趋势;环空介质采用清水比空气的导热效果好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号