首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
设计了一种恒跨导恒增益的轨到轨运算放大器.输入级采用一倍电流镜控制的互补差分对结构,实现轨到轨和恒跨导.通过分析运算放大器电压增益随共模电压变化的原因,提出了一种前馈型恒增益控制模块,可以根据共模电压开启或关闭附加电流源,使运算放大器电压增益保持恒定.输出级采用前馈型AB类输出结构,以达到轨到轨输出效果.采用Chartered公司0.35μm工艺进行流片,仿真及测试结果表明:该运算放大器的直流开环增益为125dB,单位增益带宽为8.879MHz,在整个共模范围内电压增益最大变化率为1.69%.  相似文献   

2.
目的 设计一个具有轨对轨输入和输出摆幅的两级CMOS运算放大器.方法 输入级采用两对单一类型的n沟道差分对管作为输入管,用两个相同的n沟道源跟随器来完成输入电平的直流电平转移,实现了轨对轨的输入摆幅;输出级采用前馈甲乙类控制的轨对轨输出级,保证了轨对轨的输出摆幅和较强的驱动能力.结果 用标准的0.6μm CMOS BSIM3v3模型库对该放大器进行了仿真,开环电压增益、单位增益带宽和相位裕度分别达到了113.57dB,11.9MHz和53°,输入级跨导的变化在±5%内.结论 所设计运算放大器其输入和输出摆幅为轨对轨,满足设计所提要求.  相似文献   

3.
直流伺服电机轨到轨输出的PWM驱动电路设计   总被引:1,自引:0,他引:1  
为实现驱动低电压大电流车载直流伺服电机的轨到轨输出,设计利用MOSFET低导通电压特性和LT 1336电感式开关自举功能搭建PWM驱动电路.此电路在实验中驱动效率高、发热量小,解决了传统PWM驱动电路效率低、发热量大的问题,能够较好地应用于车载电机的驱动.  相似文献   

4.
通过对常用长轨收轨车作业中存在问题的分析。提出并在长轨收轨车上进行了机械化改造。重点介绍了长轨收轨车上新增卷扬机系统的设计及安装方法、主要相关参数的选择以及新型双轨夹具结构的设计,最后对改造后系统的投用情况进行了效果分析。  相似文献   

5.
介绍了一种输入轨至轨CMOS运算放大器,该放大器采用了共源共栅结构做增益级,在输入级跨导使用了电流补偿,以使其几乎恒定.在3 V电源电压下的静态功耗只有180μW,带5 p的负载电容时,直流开环增益,单位增益带宽分别达到75 dB,1.5 MHz.  相似文献   

6.
为了解决控制电压范围小、调谐增益过大导致压控振荡器(voltage controlled oscillator, VCO)对控制线噪声抗干扰能力弱的问题,设计了一种高度线性化轨对轨频率调节的压控振荡器。采用SMIC 0.18μm CMOS工艺,设计了电压转电流电路实现控制电压与电流饥渴型振荡器尾电流的轨到轨线性转化,进而实现振荡频率的轨到轨线性调节;并且利用缓冲器优化振荡波形以适应锁相环系统应用。Cadence Spectre仿真结果表明,振荡器在1.8 V的轨对轨控制电压范围内都具有很好的线性,调谐增益为183 MHz/V,频率范围为0.89~1.22 GHz,中心频率1.06 GHz,功耗仅有227.8μW。本文设计适用于锁相环的集成应用,可为压控振荡器的设计提供支持。  相似文献   

7.
基于0.6μm CMOS工艺,设计了一种轨对轨运算放大器.讨论了该运算放大器的原理、性能及设计方法,并进行了模拟仿真.此运算放大器采用了3.3V单电源供电,其输入共模范围和输出信号摆幅接近于地和电源电压,即所谓输入和输出电压范围轨对轨.其运放的小信号增益为77dB,单位增益带宽为4.32MHz,相位裕度为79度.由于电路简单,工作稳定,输入输出线性动态范围宽,非常适合于SOC芯片内集成.  相似文献   

8.
共轨柴油机轨压控制研究   总被引:5,自引:1,他引:4  
研究高压共轨柴油机共轨压力的控制策略及其控制参数优化.分析了调压阀特性及其控制参数,研究了调压阀控制频率、共轨压力采样周期和压力闭环调节周期对压力控制的影响及共轨压力对发动机性能的影响,确立了发动机全工况目标轨压控制策略.发动机台架试验表明,选取的调压阀控制频率、轨压采样周期、压力闭环控制周期及轨压的发动机匹配、修正策略可满足共轨柴油机的要求.  相似文献   

9.
针对高压泵性能检测系统对轨压控制精度要求比实际车用系统高得多的情况,分析了共轨高压泵性能检测的要求,采用压力控制阀代替喷油器,避免了喷油器喷油产生的轨压波动和流量脉动对测试精度的影响.建立了试验台轨压控制模型,研究了轨压控制策略,以可驱动压力控制阀的试验控制器代替电控单元(ECU).根据系统的特点设计了以TMS320LF2407 数字信号处理器(DSP)为核心,采用模糊自整定PID控制算法的数字控制器.经试验验证,流量控制阀的电流控制误差小于0.2%,试验台轨压控制误差小于0.4%,满足了高压泵性能检测的要求.  相似文献   

10.
基于多学科设计优化方法,以某型高压共轨柴油机匹配的共轨管容积最佳、压力波动最小、质量最小和进油口位置最佳为目标函数建立共轨管多学科设计优化体系,并在充分考虑各学科间耦合作用的基础上,采用模拟退火算法对多学科设计优化模型进行优化求解。研究结果表明:共轨管的容积由原设计值21.991 cm3减少到21.756 cm3,减小了1.07%;总质量由1.250 kg减少到1.165 kg,减小了6.8%;压力波动幅度由6 MPa降低至5 MPa,降幅为16.7%;优化后共轨管的整体性能得到提高,能够满足高压共轨燃油喷射系统的要求。  相似文献   

11.
为了适应铁路运输的新要求,把波纹腹板 H 型钢的研究成果应用到钢轨上,开发出新型波纹轨腰钢轨,一种新型的钢轨结构。把普通钢轨的平轨腰结构轧制成波纹结构,会提高钢轨的承载能力和钢轨的稳定性。为了分析波纹轨腰钢轨的力学性能,基于有限元软件 DE-FORM,分别建立了普通钢轨和波纹轨腰钢轨的有限元模型。通过动力学模拟可知,在相同载荷和运动速度作用下,波纹轨腰钢轨的所受的最大应力、等效应变和 X 方向的位移均小于普通钢轨。并进行了静力学模拟和实验,其结果说明波纹轨腰钢轨的承载能力是普通钢轨的1.3倍以上。  相似文献   

12.
为了解决高速铁路轨道表面缺陷机器视觉检测系统中采集图像的冗余问题,本文提出一种钢轨表面图像冗余信息的模糊匹配算法.该种算法首先采用竖直投影法提取钢轨表面区域;之后对钢轨表面区域进行预处理并二值化,得到缺陷的位置信息;然后通过感知哈希算法,得到钢轨表面缺陷的形态信息;最后计算缺陷的位置误差和形态相似度,基于模糊匹配算法,得到匹配结果.通过实验验证,该算法能有效识别系统图像中的冗余部分,准确率达到97.5%.  相似文献   

13.
本文从摩擦、接触理论与断裂力学方面论述了轴重与钢轨磨耗和损伤的关系,并结合现场的调查资料与实际情况,提出钢轨磨耗与破损和轴重成指数关系而与运量成比例关系的结论。为适应我国重载运输的需要和轴重不断提高的趋势,对轨道与转向架结构提出了改进建议。  相似文献   

14.
本文通过理论计算和现场试验,论述了曲线轨距,外轨超高,轨底坡及曲线圆顺度等轨道参数对曲线钢轨磨损的影响.提出了减少曲线轨距、增大曲线钢轨轨底坡等技术措施,以减缓曲线钢轨的严重磨损.  相似文献   

15.
随着运量和轴重的不断增加,钢轨伤损情况明显加重。钢轨打磨可以有效解决钢轨的疲劳伤损。为此针对大秦铁路钢轨滚动接触疲劳伤损进行了钢轨打磨方面的研究,简述了大秦铁路钢轨打磨现状,提出了钢轨打磨试验方案。  相似文献   

16.
为了研究高速铁路曲尖轨磨耗严重的问题,现场实测不同位置处的18号高速道岔曲尖轨型面及不同磨耗程度的高速列车车轮型面,建立车轮-基本轨-曲尖轨有限元模型,进行轮轨弹塑性接触分析,得出如下结论:车轮与尖轨接触状态受车轮磨耗程度与沿尖轨线路接触位置影响;使用标准车轮的情况下,当尖轨与基本轨共同承担载荷时,随着距尖轨尖端距离的增加,尖轨所受最大等效应力呈先增大后减小的趋势,当超过屈服极限时,易造成尖轨飞边;当尖轨单独承担全部载荷时,所受最大等效应力急剧增加,塑性变形加重,侧磨加剧.不同磨耗程度的车轮对尖轨会造成不同损伤,磨耗Ⅰ型车轮易造成尖轨压溃,磨耗Ⅱ型、磨耗Ⅲ型、磨耗Ⅳ型易使尖轨发生飞边,剥离掉块.  相似文献   

17.
介绍一种新型结构钢轨——波纹轨腰钢轨,这种钢轨的轨腰呈波纹板状。首次给出了这种新型钢材的截面几何性质及相关数据,并对这种新型钢轨进行了力学计算,分析了这种新型钢轨在侧向钢度和稳定性方面的优越性,并与现有平板状轨腰钢轨进行了比较,为钢轨结构研究提供一个新的思路。  相似文献   

18.
波纹重轨轨腰强度的数值分析   总被引:3,自引:0,他引:3  
建立起波纹轨腰钢轨计算模型,运用有限元数值计算软件分别计算了平板、波纹两种轨腰在不同承载条件下的应力和位移,获得了大量的应力、位移计算数据,分析了两种轨腰结构的应力、位移分布规律和特点,为波纹轨腰钢轨的研究提供了数据支持。  相似文献   

19.
高压共轨柴油机喷油器喷油特性研究   总被引:4,自引:0,他引:4  
为减少电控喷油器配机的调试工作量,对喷油器油量标定及基本MAP的建立进行了研究,分析了电控喷油器喷油一致性及均匀性的主要影响因素.提出在小油量下,采用压力波动量控制的办法可达到一致性要求,采用喷油脉宽修正的办法可达到均匀性要求.采用变步长方法确定了喷油初始基本MAP,进而检验了基本喷油量MAP的准确性.装机实验结果表明,所建立的初始基本MAP比较合理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号