首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
采用不同浓度的硫酸溶液浸渍处理TiO2,制得不同SO42-负载量的SO42-/TiO2光催化刺.考察了光催化剂对甲基橙溶液的光催化行为.发现SO42-/TiO2的光催化活性高于TiO2的光催化活性,浸渍液中H2SO4的浓度对SO42-/TiO2的催化活性有一定的影响,H2SO4溶液的最佳浓度为0.4 mol/dm3,催化剂的焙烧温度与光催化活性间也存在一定的关系,最佳焙烧温度为500℃,光强度与光催化反应速率相对应.  相似文献   

2.
采用水热法,以Ti(SO4)2为钛源,NaCl为氯源制备了具有高催化活性的氯掺杂二氧化钛(Cl/TiO2)光催化剂.X射线衍射(XRD)、透射电子显微镜(TEM)和紫外可见漫反射光谱(DRS)等手段对样品进行表征.结果表明,焙烧温度、氯投加量等都影响Cl/TiO2光催化剂的光催化活性.750℃焙烧、氯投加量为15%(与钛的物质的量比)时的Cl/TiO2具有最佳的光催化活性,其平均粒径大小为67.0nm,比表面积为9.3m2/g.该催化剂是锐钛矿和金红石相的混晶,其中锐钛矿含量为74.1%.苯酚降解实验表明:该催化剂的光催化活性高于商品二氧化钛P-25,200min光照时苯酚的降解率可达90.6%.  相似文献   

3.
采用搅拌式光催化反应器,以中压汞灯作光源,甲基橙为模型化合物,考察了SO42- 处理及Cu2+对TiO2 光催化活性的影响.研究发现,SO42- 处理以及Cu2+ 的加入都能够提高TiO2 的光催化活性,在此反应体系中甲基橙的降解为一级反应,甲基橙的光催化降解速率与光强度成正比,TiO2 光催化剂的投加量为150 mg/L,Cu2+的加入量为200μg/L时光催化效果最佳.  相似文献   

4.
采用溶胶-凝胶法制备复合半导体Y2O3/TiO2纳米材料.以酸性红B溶液的光催化降解反应为实验模型,考察了TiO2掺杂Y2O3后的光催化氧化活性,探讨了Y2O3掺杂量、pH值、焙烧温度及时间对Y2O3/TiO2复合氧化物催化剂光催化活性的影响及溶液浓度、光照时间、催化剂用量对酸性红B溶液降解率的影响.结果表明,Y2O3掺杂量为0.1%时,其催化活性是同样条件下催化剂TiO2的2.1倍;最适宜焙烧温度为400~450℃;焙烧时间为3h,凝胶pH=10时,催化效果最佳.在酸性红B溶液浓度为20mg/L的条件下,催化剂用量为0.15g,光照时间为2.5h对酸性红B溶液的降解率可达96.8%以上.  相似文献   

5.
以钛酸钠晶须为载体,采用溶胶-凝胶法制备TiO2/Na2Ti3O7,用浸渍法制得H3PW12O40修饰的复合光催化剂H3PW12O40/TiO2/Na2Ti3O7.SEM图表明产品的包覆情况良好,UV-Vis光谱显示产品的光响应增强.在自制的光化学反应器中,用一定浓度的孔雀石绿作为底物进行光催化脱色实验,通过光强度、pH值、曝气量、底物浓度、催化剂用量等对脱色率的影响,考察产品的光催化活性.实验结果表明,复合型光催化剂具有较高的光催化活性,浓度为12.5 mg·L-1孔雀石绿在250 W中压汞灯下光照60 min脱色率可达到94.23%.  相似文献   

6.
探讨了光催化剂TiO2/C的制备条件和不同制备条件对NO2^-的光催化氧化效果,研究表明,制备TiO2/C的最佳条件为:Ti(OCH3)4的用量为10ml,附载光催化剂样品在400℃下焙烧5hTiO2/C的用量为0.5g时光催化效果最好。  相似文献   

7.
采用浸渍法制备了MnOxTiO2催化剂,考察了Mn的质量分数、焙烧温度等催化剂制备参数以及反应温度、空速、氧含量、进口NO浓度等操作条件对催化剂催化氧化NO活性的影响.研究发现,锰的的质量分数为20%,焙烧温度为300 ℃时,催化剂具有最佳催化氧化活性.在优化催化剂在最佳操作条件下,探讨了MnOxTiO2催化剂抗SO2和H2O毒化能力。进行抗硫抗水时实验时发现,反应气中加入H2O后,NO氧化率稳定在68%,能满足NOx高效吸收的要求,断水后活性能完全恢复.催化剂在SO2单独存在和SO2、H2O同时存在时,活性均明显下降,发生不可逆中毒.该催化剂有望用于基本不含SO2的燃气锅炉烟气和以NO为主的工业废气的催化氧化.  相似文献   

8.
为考察低温醇解法制备金属离子掺杂型TiO2的光催化活性,本文以TiCl4为原料,采用低温正丁醇醇解法制备Bi掺杂的光催化剂TiO2.在紫外光照和太阳光照条件下,以亚甲基蓝溶液作为降解物研究不同铋掺杂量二氧化钛样品的催化性能.结果表明:当Bi2O3/TiO2的摩尔百分比为0.25%、醇解时间为8 h时,TiO2在紫外光下的光催化活性达到最高,是不掺杂铋的4.14倍;太阳光照射下,Bi2O3/TiO2光催化剂的光催化活性是15 W紫外灯照射下的2.8倍.  相似文献   

9.
以P25(锐钛矿/金红石质量比为4∶1)为母体,钨酸铵为钨源,采用浸渍、研磨、煅烧等步骤制备出复合型WO3/TiO2光催化剂粉体,并采用扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见漫反射(DRS)等手段对光催化剂进行表征.以500 W氙灯为光源,低浓度苯酚溶液为目标降解物,复合型WO3/TiO2粉体为光催化剂,通过光降解反应,研究了三氧化钨复合浓度、光催化剂浓度、反应体系的温度等因素对光降解性能的影响.结果表明:WO3的复合能使光催化剂粉体团聚现象加重;WO3高度分散于材料中;2%WO3的复合明显扩展了光催化剂光响应范围;苯酚初始浓度为55 mg/L时,光催化剂降解苯酚实验的最佳反应温度为50℃,最佳光催化剂浓度为1.6 g/L,最佳复合摩尔浓度为2%,且其光催化性能优于P25,在60 min内苯酚降解率达到75%.  相似文献   

10.
以钛酸四丁酯为前驱体,膨胀珍珠岩(EP)为载体,采用溶胶-浸渍法制备了可漂浮于水面的负载型TiO2光催化剂。研究结果表明,TiO2被成功地负载在EP上,TiO2颗粒尺寸在20~30 nm,并且在载体表面均匀分布。600℃焙烧后,14.76%TiO2负载率的TiO2/EP催化剂表面存在锐钛矿相与金红石相混晶。对模拟污染物罗丹明B(Rh B)进行光催化降解实验的研究表明,催化剂经600℃焙烧后光催化活性最佳。在紫外光强为240μW.cm-2下光照2.5 h,0.57 g催化剂可使30 mL浓度为10 mg.L-1的Rh B的去除率达96%。  相似文献   

11.
设D1,D2是无平方因子正整数,证明了:当D2!1,2,5(mod8)时,方程组x2-D1y2=s2和x2-D2y2=-t2无本原整数解(x,y,s,t).  相似文献   

12.
设D是正整数.1995年,M.Mignotte和A.Petho运用深奥的超越数论方法确定了方程组x2-Dy2=1-D和x=2z2-1在D=6时的全部正整数解(x,y,z).对于D-1是奇素数方幂这个一般情况,给出了确定该方程组全部正整数解的初等方法,并且由此找出了该方程组在D=6和8时的全部正整数解.  相似文献   

13.
讨论2 X2对称矩阵空间S2到2×2全矩阵空间M2上保持立方幂等的映射形式.设φ:S2→M2,如果对任意矩阵A,B∈S2及数λ∈C有A-λB为立方幂等阵当且仅φ(A)-λφ(B)为立方幂等阵,则存在可逆阵P∈M2及数ε∈{1,-1}使得对任意的A∈S2有φ(A)=εPAP-1.  相似文献   

14.
讨论了Legendre方程的整数解公式 ,并导出特殊形式下的两个结论  相似文献   

15.
本文利用Hadamard变换,建立了环F_2+uF_2+u~2F_2上线性码的完全重量计数和对称重量计数的Mac Williams恒等式,推广了环F_2+uF_2+u~2F_2上线性码的Mac Williams的结论。  相似文献   

16.
利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果.得出了在不同参数变化趋势下DOA估计的相应变化情况。  相似文献   

17.
设r,s,t是两两互素且满足r2+s2=t2的正整数,1956年,Jesmanowicz猜测对任意给定的整数n,丢番图方程(rn)x+(sn)y=(tn)z仅有正整数解x=y=Z=2.讨论n=1,r=a2-b2,s=2曲,t=a2+b2,b=2m,(a,b)=1,a>b>0的情形,在a,b之一不含4k+1型素因子,a,b满足若干同余式与不等式的条件下证明了Jesmanowicz猜想成立.  相似文献   

18.
运用富立叶红外学谱(FT-IR)法对超强酸催化剂SO_4~(2-)/ZrO_2-TiO_2—SnO_2的研究结果表明,该固体超强酸有1220、1137和1050cm~(-1)三个特征吸收,当出现990cm~(-1)吸收峰时则没有超强酸性;SO_4~(2-)以螯合状双配位的方式吸附在金属离子上,没有形成硫酸盐。  相似文献   

19.
20.
以1,8-二(十四烷基)-3,6-二噁-1,8-辛烷二醇(n-C14 H29)2(CHCH2OCH2CH2OCH2CH)(OH)2,1,3-丙烷磺酸内酯1,3-(CH2)3SO3和NaH为原料合成了新型表面活性剂--磺酸盐型Gemini表面活性剂5,12-二(十四烷基)-4,7,10,13-四噁-1,16-十六烷二磺酸二钠(n-C14H29)2(OCHCH2OCH2CH2OCH2CHO)(C3H6SO3Na)2.考察了原料配比、反应时间、反应温度等主要因素对反应产率的影响,优选出了最佳合成工艺.实验结果表明最佳反应条件为:在碱性条件下,原料配比(物质的量的比)n((n-C14H29)2(CHCH2OCH2CH2OCH2CH)(OH)2):n(1,3-(CH2)3SO3):n(NaH)=1:2.066:2.166,反应时间24h,反应温度60℃.在最佳反应条件下,反应产率达98.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号