首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beutler B 《Nature》2004,430(6996):257-263
The Toll-like receptors (TLRs) are the key proteins that allow mammals--whether immunologically naive or experienced--to detect microbes. They lie at the core of our inherited resistance to disease, initiating most of the phenomena that occur in the course of infection. Quasi-infectious stimuli that have been used for decades to study inflammatory mechanisms can activate the TLR family of proteins. And it now seems that many inflammatory processes, both sterile and infectious, may depend on TLR signalling. We are in a good position to apply our understanding of TLR signalling to a range of challenges in immunology and medicine.  相似文献   

2.
Phagocytosis and autophagy are two ancient, highly conserved processes involved, respectively, in the removal of extracellular organisms and the destruction of organisms in the cytosol. Autophagy, for either metabolic regulation or defence, involves the formation of a double membrane called the autophagosome, which then fuses with lysosomes to degrade the contents, a process that has similarities with phagosome maturation. Toll-like-receptor (TLR) engagement activates a variety of defence mechanisms within phagocytes, including facilitation of phagosome maturation, and also engages autophagy. Therefore we speculated that TLR signalling might link these processes to enhance the function of conventional phagosomes. Here we show that a particle that engages TLRs on a murine macrophage while it is phagocytosed triggers the autophagosome marker LC3 to be rapidly recruited to the phagosome in a manner that depends on the autophagy pathway proteins ATG5 and ATG7; this process is preceded by recruitment of beclin 1 and phosphoinositide-3-OH kinase activity. Translocation of beclin 1 and LC3 to the phagosome was not associated with observable double-membrane structures characteristic of conventional autophagosomes, but was associated with phagosome fusion with lysosomes, leading to rapid acidification and enhanced killing of the ingested organism.  相似文献   

3.
Reduced antinociception in mice lacking neuronal nicotinic receptor subunits   总被引:31,自引:0,他引:31  
Nicotine exerts antinociceptive effects by interacting with one or more of the subtypes of nicotinic acetylcholine receptors (nAChRs) that are present throughout the neuronal pathways that respond to pain. To identify the particular subunits involved in this process, we generated mice lacking the alpha4 subunit of the neuronal nAChR by homologous recombination techniques and studied these together with previously generated mutant mice lacking the beta2 nAChR subunit. Here we show that the homozygous alpha4-/- mice no longer express high-affinity [3H]nicotine and [3H]epibatidine binding sites throughout the brain. In addition, both types of mutant mice display a reduced antinociceptive effect of nicotine on the hot-plate test and diminished sensitivity to nicotine in the tail-flick test. Patch-clamp recordings further reveal that raphe magnus and thalamic neurons no longer respond to nicotine. The alpha4 nAChR subunit, possibly associated with the beta2 nAChR subunit, is therefore crucial for nicotine-elicited antinociception.  相似文献   

4.
Toll-like receptors (TLRs) are activated by pathogen-associated molecular patterns to induce innate immune responses and production of pro-inflammatory cytokines, interferons and anti-inflammatory cytokines. TLRs activate downstream effectors through adaptors that contain Toll/interleukin-1 receptor (TIR) domains, but the mechanisms accounting for diversification of TLR effector functions are unclear. To dissect biochemically TLR signalling, we established a system for isolating signalling complexes assembled by dimerized adaptors. Using MyD88 as a prototypical adaptor, we identified TNF receptor-associated factor 3 (TRAF3) as a new component of TIR signalling complexes that is recruited along with TRAF6. Using myeloid cells from TRAF3- and TRAF6-deficient mice, we show that TRAF3 is essential for the induction of type I interferons (IFN) and the anti-inflammatory cytokine interleukin-10 (IL-10), but is dispensable for expression of pro-inflammatory cytokines. In fact, TRAF3-deficient cells overproduce pro-inflammatory cytokines owing to defective IL-10 production. Despite their structural similarity, the functions of TRAF3 and TRAF6 are largely distinct. TRAF3 is also recruited to the adaptor TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta) and is required for marshalling the protein kinase TBK1 (also called NAK) into TIR signalling complexes, thereby explaining its unique role in activation of the IFN response.  相似文献   

5.
Neuropeptide Y (NPY) is believed to exert antinociceptive actions by inhibiting the release of substance P and other 'pain neurotransmitters' in the spinal cord dorsal horn. However, the physiological significance and potential therapeutic value of NPY remain obscure. It is also unclear which receptor subtype(s) are involved. To identify a possible physiological role for the NPY Y1 receptor in pain transmission, we generated NPY Y1 receptor null mutant (Y1-/-) mice by homologous recombination techniques. Here we show that Y1-/- mice develop hyperalgesia to acute thermal, cutaneous and visceral chemical pain, and exhibit mechanical hypersensitivity. Neuropathic pain is increased, and the mice show a complete absence of the pharmacological analgesic effects of NPY. In the periphery, Y1 receptor activation is sufficient and required for substance P release and the subsequent development of neurogenic inflammation and plasma leakage. We conclude that the Y1 receptor is required for central physiological and pharmacological NPY-induced analgesia and that its activation is both sufficient and required for the release of substance P and initiation of neurogenic inflammation.  相似文献   

6.
7.
The mammalian vomeronasal organ (VNO), a part of the olfactory system, detects pheromones--chemical signals that modulate social and reproductive behaviours. But the molecular receptors in the VNO that detect these chemosensory stimuli remain undefined. Candidate pheromone receptors are encoded by two distinct and complex superfamilies of genes, V1r and V2r (refs 3 and 4), which code for receptors with seven transmembrane domains. These genes are selectively expressed in sensory neurons of the VNO. However, there is at present no functional evidence for a role of these genes in pheromone responses. Here, using chromosome engineering technology, we delete in the germ line of mice an approximately 600-kilobase genomic region that contains a cluster of 16 intact V1r genes. These genes comprise two of the 12 described V1r gene families, and represent approximately 12% of the V1r repertoire. The mutant mice display deficits in a subset of VNO-dependent behaviours: the expression of male sexual behaviour and maternal aggression is substantially altered. Electrophysiologically, the epithelium of the VNO of such mice does not respond detectably to specific pheromonal ligands. The behavioural impairment and chemosensory deficit support a role of V1r receptors as pheromone receptors.  相似文献   

8.
Boettger T  Hübner CA  Maier H  Rust MB  Beck FX  Jentsch TJ 《Nature》2002,416(6883):874-878
Hearing depends on a high K(+) concentration bathing the apical membranes of sensory hair cells. K(+) that has entered hair cells through apical mechanosensitive channels is transported to the stria vascularis for re-secretion into the scala media(). K(+) probably exits outer hair cells by KCNQ4 K(+) channels(), and is then transported by means of a gap junction system connecting supporting Deiters' cells and fibrocytes() back to the stria vascularis. We show here that mice lacking the K(+)/Cl(-) (K-Cl) co-transporter Kcc4 (coded for by Slc12a7) are deaf because their hair cells degenerate rapidly after the beginning of hearing. In the mature organ of Corti, Kcc4 is restricted to supporting cells of outer and inner hair cells. Our data suggest that Kcc4 is important for K(+) recycling() by siphoning K(+) ions after their exit from outer hair cells into supporting Deiters' cells, where K(+) enters the gap junction pathway. Similar to some human genetic syndromes(), deafness in Kcc4-deficient mice is associated with renal tubular acidosis. It probably results from an impairment of Cl(-) recycling across the basolateral membrane of acid-secreting alpha-intercalated cells of the distal nephron.  相似文献   

9.
Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αβ(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.  相似文献   

10.
Murtra P  Sheasby AM  Hunt SP  De Felipe C 《Nature》2000,405(6783):180-183
Modulation of substance P activity offers a radical new approach to the management of depression, anxiety and stress. The substance P receptor is highly expressed in areas of the brain that are implicated in these behaviours, but also in other areas such as the nucleus accumbens which mediate the motivational properties of both natural rewards such as food and of drugs of abuse such as opiates. Here we show a loss of the rewarding properties of morphine in mice with a genetic disruption of the substance P receptor. The loss was specific to morphine, as both groups of mice responded when cocaine or food were used as rewards. The physical response to opiate withdrawal was also reduced in substance P receptor knockout mice. We conclude that substance P has an important and specific role in mediating the motivational aspects of opiates and may represent a new pharmacological route for the control of drug abuse.  相似文献   

11.
Human type 1 (insulin-dependent) diabetes is a common auto-immune disease of the insulin-producing beta cells of the pancreas which is caused by both genetic and environmental factors. Several features of the genetics and immunopathology of diabetes in nonobese diabetic (NOD) mice are shared with the human disease. Of the three diabetes-susceptibility genes, Idd-1 -3 and -4 that have been mapped in mice to date, only in the case of Idd-1 is there any evidence for the identity of the gene product: allelic variation within the murine immune response I-A beta gene and its human homologue HLA-DQB1 correlates with susceptibility, implying that I-A beta is a component of Idd-1. We report here the mapping of Idd-5 to the proximal region of mouse chromosome 1. This region contains at least two candidate susceptibility genes, the interleukin-1 receptor gene and Lsh/Ity/Bcg, which encodes resistance to bacterial and parasitic infections and affects the function of macrophages.  相似文献   

12.
T Roger  J David  M P Glauser  T Calandra 《Nature》2001,414(6866):920-924
  相似文献   

13.
Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor   总被引:113,自引:0,他引:113  
Three interleukin-1 inhibitors have been purified to homogeneity from medium conditioned by human monocytes. Partial sequence analysis and digestion with N-glycanase indicate that these are glycosylation forms of a single protein. The protein binds to the interleukin-1 receptor but has no interleukin-1-like activity, even at very high concentrations, and is therefore a pure receptor antagonist.  相似文献   

14.
P2X1 receptors for ATP are ligand-gated cation channels, present on many excitable cells including vas deferens smooth muscle cells. A substantial component of the contractile response of the vas deferens to sympathetic nerve stimulation, which propels sperm into the ejaculate, is mediated through P2X receptors. Here we show that male fertility is reduced by approximately 90% in mice with a targeted deletion of the P2X1 receptor gene. Male mice copulate normally--reduced fertility results from a reduction of sperm in the ejaculate and not from sperm dysfunction. Female mice and heterozygote mice are unaffected. In P2X1-receptor-deficient mice, contraction of the vas deferens to sympathetic nerve stimulation is reduced by up to 60% and responses to P2X receptor agonists are abolished. These results show that P2X1 receptors are essential for normal male reproductive function and suggest that the development of selective P2X1 receptor antagonists may provide an effective non-hormonal male contraceptive pill. Also, agents that potentiate the actions of ATP at P2X1 receptors may be useful in the treatment of male infertility.  相似文献   

15.
Bone and haematopoietic defects in mice lacking c-fos.   总被引:26,自引:0,他引:26  
  相似文献   

16.
17.
Myc rescue of a mutant CSF-1 receptor impaired in mitogenic signalling.   总被引:25,自引:0,他引:25  
The colony-stimulating factor-1 receptor (CSF-1R) mediates its pleiotropic effects through the coupling of its ligand-activated tyrosine kinase to multiple intracellular effector proteins, whose combined actions determine the magnitude and specificity of the biological response. The interaction of cytoplasmic signalling molecules with CSF-1R is mediated in part by sequence motifs flanking sites of receptor tyrosine phosphorylation. Mutation of an autophosphorylation site at tyrosine 809 in the cytoplasmic domain of human CSF-1R does not significantly reduce its ligand-stimulated tyrosine kinase activity, binding to phosphatidylinositol 3-kinase, or induction of the immediate early response genes, c-fos and junB (ref.2). Unlike cells bearing wild-type receptors, mouse NIH3T3 cells expressing mutant CSF-1R(Phe 809) were unable to grow in serum-free medium containing human recombinant CSF-1 and did not form colonies in semi-solid medium in its presence. CSF-1 induction of c-myc messenger RNA in these cells was impaired, but enforced expression of an exogenous c-myc gene restored their ability to proliferate in response to the growth factor. These studies demonstrate a receptor-mediated bifurcation of intracellular signal transduction pathways during the immediate early response and assign a central role for c-myc in CSF-1-induced mitogenesis.  相似文献   

18.
Gigantism in mice lacking suppressor of cytokine signalling-2   总被引:20,自引:0,他引:20  
  相似文献   

19.
Hsu LC  Park JM  Zhang K  Luo JL  Maeda S  Kaufman RJ  Eckmann L  Guiney DG  Karin M 《Nature》2004,428(6980):341-345
Macrophages are pivotal constituents of the innate immune system, vital for recognition and elimination of microbial pathogens. Macrophages use Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns--including bacterial cell wall components, such as lipopolysaccharide or lipoteichoic acid, and viral nucleic acids, such as double-stranded (ds)RNA--and in turn activate effector functions, including anti-apoptotic signalling pathways. Certain pathogens, however, such as Salmonella spp., Shigellae spp. and Yersiniae spp., use specialized virulence factors to overcome these protective responses and induce macrophage apoptosis. We found that the anthrax bacterium, Bacillus anthracis, selectively induces apoptosis of activated macrophages through its lethal toxin, which prevents activation of the anti-apoptotic p38 mitogen-activated protein kinase. We now demonstrate that macrophage apoptosis by three different bacterial pathogens depends on activation of TLR4. Dissection of anti- and pro-apoptotic signalling events triggered by TLR4 identified the dsRNA responsive protein kinase PKR as a critical mediator of pathogen-induced macrophage apoptosis. The pro-apoptotic actions of PKR are mediated both through inhibition of protein synthesis and activation of interferon response factor 3.  相似文献   

20.
Chen CK  Burns ME  He W  Wensel TG  Baylor DA  Simon MI 《Nature》2000,403(6769):557-560
Timely deactivation of the alpha-subunit of the rod G-protein transducin (Galphat) is essential for the temporal resolution of rod vision. Regulators of G-protein signalling (RGS) proteins accelerate hydrolysis of GTP by the alpha-subunits of heterotrimeric G proteins in vitro. Several retinal RGS proteins can act in vitro as GTPase accelerating proteins (GAP) for Galphat. Recent reconstitution experiments indicate that one of these, RGS9-1, may account for much of the Galphat GAP activity in rod outer segments (ROS). Here we report that ROS membranes from mice lacking RGS9-1 hydrolyse GTP more slowly than ROS membranes from control mice. The Gbeta5-L protein that forms a complex with RGS9-1 was absent from RGS9-/- retinas, although Gbeta5-L messenger RNA was still present. The flash responses of RGS9-/- rods rose normally, but recovered much more slowly than normal. We conclude that RGS9-1, probably in a complex with Gbeta5-L, is essential for acceleration of hydrolysis of GTP by Galphat and for normal recovery of the photoresponse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号