首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary The development of optical and neural factors affecting visual acuity is reviewed with the aim of determining the age at which the relationship between optical and neural factors become mature. Delayed development of extrastriate cortical and indirect visual pathways may account for differences in acuity assessed by preferential looking and pattern reversal VEPs.  相似文献   

2.
3.
4.
5.
6.
Vascular endothelial growth factors (VEGFs), initially thought to act specifically on the vascular system, exert trophic effects on neural cells during development and adulthood. Therefore, the VEGF system serves as a promising therapeutic target for brain pathologies, but its simultaneous action on vascular cells paves the way for harmful side effects. To circumvent these deleterious effects, many studies have aimed to clarify whether VEGFs directly affect neural cells or if the effects are mediated secondarily via other cell types, like vascular cells. A great number of reports have shown the expression and function of VEGF receptors (VEGFRs), mainly VEGFR-1 and -2, in neural cells, where VEGFR-2 has been described as the major mediator of VEGF-A signals. This review aims to summarize and compare the divergent roles of VEGFR-1 and -2 during CNS development and homeostasis.  相似文献   

7.
Mice carrying chimeric, truncated or mutated genes encoding intermediate filament (IF) proteins type III do not show any detectable severe pathology. However, upon (over)expression of the transgene in the eye lens all animals develop lens opacification (cataract). At the cellular level the loss of visual acuity is preceded by interference with the terminal differentiation of lens fibre cells, plasma membrane damage, distorted assembly of the IF cytoskeleton and perturbation of the cytoskeleton-membrane complex. The degree of expression is paralleled by the extent of the damages. Received 4 November 1996; accepted 15 November 1996  相似文献   

8.
Many organs, such as lungs, nerves, blood and lymphatic vessels, consist of complex networks that carry flows of information, gases, and nutrients within the body. The morphogenetic patterning that generates these organs involves the coordinated action of developmental signaling cues that guide migration of specialized cells. Precision guidance of endothelial tip cells by vascular endothelial growth factors (VEGFs) is well established, and several families of neural guidance molecules have been identified to exert guidance function in both the nervous and the vascular systems. This review discusses recent advances in VEGF research, focusing on the emerging role of neural guidance molecules as key regulators of VEGF function during vascular development and on the novel role of VEGFs in neural cell migration and nerve wiring.  相似文献   

9.
10.
语音识别技术经过半个世纪的积累,于近年来达到大规模商用水平.本文概括了统计语音识别理论的发展状况,并单独介绍了深度神经网络在声学建模、语言建模、多语言共享、语义识别等方面的卓越性能.深度神经网络的性能优势引起了我们强烈的兴趣.通过回顾类人听觉信息处理对深度神经网络的改进作用,我们意识到,深度神经网络与类人听觉信息处理相结合,必将推进语音识别技术的进一步发展.反过来,深度神经网络技术在语音识别中的进步,也必将推动类人听觉信总、处理技术的进步.语音识别技术后续发展的重点是对深度神经网络的结构和训练算法的改进使之更好地实现类人听觉.最后,我们分析了采用深度神经网络模拟人类听觉的抗噪修复机理和听觉关注机理的可能性.  相似文献   

11.
Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.  相似文献   

12.
13.
The concept that atrial natriuretic peptide (ANP) and the closely related peptides BNP and CNP might be involved in the ontogeny of several organ systems emerged in the late 1980s. While many of the reported in vitro actions have not been examined in the context of organ development in vivo, recent studies demonstrate that mice which lack or overexpress natriuretic peptides or receptors exhibit pronounced skeletal growth defects. This article discusses how natriuretic peptides and other factors appear to regulate bone growth as an example of how natriuretic peptides might participate in the ontogeny of other organ systems. Evidence indicating that natriuretic peptides regulate neural development is then reviewed. Natriuretic peptides and receptors exhibit complex expression patterns in the developing nervous system, where they have been shown to act on neural cells as early as at the embryonic neural tube stage. Interestingly, both bone and brain growth appear to utilize primarily CNP and the CNP-specific type B receptor, and perhaps the type C receptor. In vitro data indicate that CNP may act on developing neurons, astrocytes and Schwann cells like a classical growth factor, regulating proliferation, patterning, phenotypic specification, survival and axonal pathfinding. Natriuretic peptides might also have roles in the vascularization of the embryonic brain, establishment of the blood-brain and blood-nerve barriers, and perhaps in nerve regeneration.Received 13 April 2004; received after revision 20 May 2004; accepted 27 May 2004  相似文献   

14.
Soluble factors and the development of rod photoreceptors   总被引:7,自引:0,他引:7  
Photoreceptors are the most abundant cell type in the vertebrate neural retina. Like the other retinal neurons and the Müller glia, they arise from a population of precursor cells that are multipotent and intrinsic to the retina. Approximately 10 years ago, several studies demonstrated that retinal precursor cells (RPCs) are competent to respond to environmental factors that promote cell type determination and differentiation. Since those studies, significant effort has been directed at identifying the molecular nature of these environmental signals and understanding the precise mechanisms they employ to drive RPCs towards the different retinal fates. In this review, we describe the recent progress toward understanding how environmental factors influence the development of vertebrate rod photoreceptors.  相似文献   

15.
We use dynamic factors and neural network models to identify current and past states (instead of future) of the US business cycle. In the first step, we reduce noise in data by using a moving average filter. Dynamic factors are then extracted from a large-scale data set consisted of more than 100 variables. In the last step, these dynamic factors are fed into the neural network model for predicting business cycle regimes. We show that our proposed method follows US business cycle regimes quite accurately in-sample and out-of-sample without taking account of the historical data availability. Our results also indicate that noise reduction is an important step for business cycle prediction. Furthermore, using pseudo real time and vintage data, we show that our neural network model identifies turning points quite accurately and very quickly in real time.  相似文献   

16.
Melanoblasts are a particular type of cell that displays extensive cellular proliferation during development to contribute to the skin. There are only a few melanoblast founders, initially located just dorsal to the neural tube, and they sequentially colonize the dermis, epidermis, and hair follicles. In each compartment, melanoblasts are exposed to a wide variety of developmental cues that regulate their expansion. The colonization of the dermis and epidermis by melanoblasts involves substantial proliferation to generate thousands of cells or more from a few founders within a week of development. This review addresses the cellular and molecular events occurring during melanoblast development. We focus on intrinsic and extrinsic factors that control melanoblast proliferation. We also present a robust mathematical model for estimating the doubling-time of dermal and epidermal melanoblasts for all coat color phenotypes from black to white.  相似文献   

17.
18.
19.
The role of VEGF receptors in angiogenesis; complex partnerships   总被引:6,自引:0,他引:6  
Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to hypoxia and upon stimulation with growth factors such as transforming growth factors, interleukins or platelet-derived growth factor. VEGFs bind to three variants of type III receptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each VEGF isoform binds to a particular subset of these receptors giving rise to the formation of receptor homo- and heterodimers that activate discrete signaling pathways. Signal specificity of VEGF receptors is further modulated upon recruitment of coreceptors, such as neuropilins, heparan sulfate, integrins or cadherins. Here we summarize the knowledge accumulated since the discovery of these proteins more than 20 years ago with the emphasis on the signaling pathways activated by VEGF receptors in endothelial cells during cell migration, growth and differentiation. Received 15 September 2005; received after revision 11 November; accepted 24 November 2005  相似文献   

20.
Recent studies have shown that neural crest-derived progenitor cells can be found in diverse mammalian tissues including tissues that were not previously shown to contain neural crest derivatives, such as bone marrow. The identification of those "new" neural crest-derived progenitor cells opens new strategies for developing autologous cell replacement therapies in regenerative medicine. However, their potential use is still a challenge as only few neural crest-derived progenitor cells were found in those new accessible locations. In this study, we developed a protocol, based on wnt1 and BMP2 effects, to enrich neural crest-derived cells from adult bone marrow. Those two factors are known to maintain and stimulate the proliferation of embryonic neural crest stem cells, however, their effects have never been characterized on neural crest cells isolated from adult tissues. Using multiple strategies from microarray to 2D-DIGE proteomic analyses, we characterized those recruited neural crest-derived cells, defining their identity and their differentiating abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号