共查询到17条相似文献,搜索用时 78 毫秒
1.
中值滤波是广泛应用于去除脉冲噪声的一种非线性去噪方法,但是单一地使用中值滤波方法去除脉冲噪声会造成图像细节信息的丢失,从而使图像变得模糊.基于噪声点检测的脉冲噪声滤波方法可以在滤除噪声的同时有效地保持图像的细节信息.本文在此基础上提出了一种改进的基于噪声点检测的脉冲噪声滤波算法,该算法在检测噪声点时用被检测点的中值滤波结果作为判定该点是否为噪声点的依据.而在滤除噪声时,采用的是迭代的中值滤波算法.从实验结果中可以看到。与其它中值滤波算法相比。本文的算法在去除脉冲噪声时能取得理想的去噪效果. 相似文献
2.
基于脉冲噪声的特点提出了一种新的滤波方法——迭代自适应中值滤波方法(Iterative Adaptive Median Filter,IAMF)。本方法根据被脉冲噪声污染的图像的特征,建立相应的权重函数,并结合迭代算法进行噪声消除,处理后的图像不但能够较好地保留细节信息,而且能够保持良好的清晰度。此外,在IAMF滤波过程中,由于噪声点不参与计算,从而有效避免了图像中噪声点对正常像素的影响,同时也提高了运算速度。试验结果进一步证明:当噪声率超过0.5时,该方法的优越性尤为突出,噪声率超过0.9时,图像处理效果仍比较理想。 相似文献
3.
4.
针对标准中值滤波算法的不足,提出改进的自适应中值滤波算法。该算法利用极值的方法统计图像噪声点,然后计算以噪声点为中心像素的予窗口的方差,对噪声点采取多窗口、多尺度的滤波。最后自适应选择方差最小的予窗口滤波。经过计算机模拟实验,采用该算法滤波,既能有效地平滑噪声,又能保存细节,效果远优于标准中值滤波算法。 相似文献
5.
依据脉冲噪声特点以及图像的像素关联性,提出了一种改进的脉冲噪声检测与处理算法。该算法首先依据脉冲噪声与其邻域多数像素在强度上具有明显差异的特点检测出疑似脉冲噪声点,然后再利用4个方向模板进一步区分疑似脉冲噪声点,最终建立脉冲噪声标记矩阵。之后,对检测到的脉冲噪声,提出了一种改进的加权中值滤波算法,该算法仅利用滤波窗口内的有效信号对窗口中心像素进行加权中值滤波,其中,加权系数的确定不仅依赖于像素间的灰度关联性,而且还依赖于像素间的位置关联性。实验结果表明,本文算法不仅可以准确检测和有效滤除图像中的脉冲噪声,而且还可以较好地保护图像中的细节。 相似文献
6.
非线性滤波方法中中值滤波因其有效的噪声抑制技术,得到广泛应用。针对传统的自适应中值滤波易将高频信号点误分为噪声点,同时容易模糊图像细节的问题,提出一种改进的自适应中值滤波方法。在进行噪声点检测时,引入了最小集合距离测度,有效地避免了将高频信号误判为噪声。实验结果表明,该方法在检测正确率、降噪和保留细节方面都优于改进前的算法。 相似文献
7.
8.
一种新的脉冲噪声图像恢复方法 总被引:1,自引:0,他引:1
为消除图像中的脉冲噪声, 提出一种窗口自适应开关中值滤波方法. 利用BP神经网络将图像中的每个像素点分类为信号点或噪声点, 再采用改进的中值滤波器对检测后的图像进行滤波处理. 根据噪声检测结果, 滤波器自适应调整窗口大小并选择性取样, 逐点滤波消除图像中的噪声. 该方法在抑制脉冲噪声、 保护图像细节方面均优于以往基于中值滤波的法, 即使在图像遭受70%噪声污染的极端情况下, 仍能得
到很好恢复. 相似文献
9.
一种新型自适应中值滤波算法 总被引:1,自引:0,他引:1
对开发大米检测中的脉冲噪声提出了一种新型的基于极值和噪声密度估计算法的自适应滤波算法,结合了EM算法和IMFLED算法的优点。实验表明该算法比现有的中值滤波去噪和保持物体的实际大小、边缘等许多重要细节的能力更强,特别在噪声密度比较高的情况。 相似文献
10.
目的:克服现有的滤波算法在噪声检测与噪声滤除上的缺陷,进一步提高去噪性能.方法:提出了多邻域中值滤波算法,对噪声检测和噪声滤除的方法分别进行改进.算法用邻域中的灰度极值进行噪声检测,对检测出来的可疑噪声,用邻域的中值作进一步的噪声检测.对噪声像素,在其邻近的9个邻域中分别求出信号像素的中值,然后用所有中值的中值作为噪声像素新的灰度.结果:基于医学图像的实验结果证明,相对于现有的算法,所提出的算法的去噪图像更加清晰,去噪结果的PSNR和SSIM值更高.结论:所提出的算法在彻底去除噪声的同时,很好地保持了图像的纹理边缘和细节,相对于现有的滤波算法,具有更好的去噪性能. 相似文献
11.
提出一种两步式椒盐噪声去除方法.第一步利用自适应中值滤波器来识别出被噪声污染的候选点;第二步利用一种边缘保持技术(全变差图像修复)来恢复出被噪声污染的点.由于椒盐噪声点的灰度值和原始像素灰度独立,所以在采用恢复技术时不使用噪声点自身的灰度信息.在噪声率不很高的情况下,这种方法可以获得比现有最好方法更高的信噪比;当噪声率高达70%以上时,该方法的信噪比与现有方法非常接近,但是主观视觉效果(例如边缘保持能力)更佳. 相似文献
12.
去噪算法在图像处理中占有极其重要的地位。为了对含有高斯白噪声和脉冲噪声的图像进行去噪,在小波软阈值去噪算法的基础上,提出一种基于噪声个数判断的改进型中值滤波算法。仿真结果表明,该算法能够同时抑制高斯白噪声和脉冲噪声,可以更好地保留图像的边缘细节,与小波软阈值算法、小波硬阈值算法、中值滤波算法相比,具有更好的去噪性能。 相似文献
13.
脉冲噪声滤波一直是图像处理研究热点。提出一种适合各种脉冲噪声,基于模糊检测和滤波新算法。这种非线性滤波算法由脉冲噪声检测和脉冲噪声滤波两部分组成,能够很好的保留原图像的轮廓清晰度。基于梯度模糊度的观点,我们构造了一个用隶属函数描述的脉冲噪声模糊集。将隶属函数用于滤波,实质是对邻像素的模糊度加权平均。实验结果显示:无论图像中含脉冲噪声多少,该算法都能快速、高效检测去除脉冲噪声算法。 相似文献
14.
在球团矿粒度在线检测系统中,球团图像采集过程的干扰噪声主要是脉冲噪声和白噪声。中值滤波对脉冲噪声有较好的滤波效果,对于白噪声降噪效果较差;小波包技术可以很好的消除白噪声,但对脉冲噪声滤波效果不理想。提出了一种将小波包变换和中值滤波相结合的球团矿图像去噪方法。实验表明,这种综合方法具有良好的消噪效果,满足球团矿图像后续更高层次处理的要求。 相似文献
15.
传统算法抗干扰性能较差,利用人工经验对高低阈值进行设置完成边缘提取,不但会出现伪边缘,同时会产生很多噪声。为此,提出一种新的基于中值滤波技术的视频图像边缘检测算法。依据集合代数原理,通过集合论对几何结构进行描述,完成对视频图像形状与结构的预处理。针对视频图像中某一点的值,对其用该点邻域中不同点值的中值进行替代,对视频图像进行平滑滤波处理。在此基础上,通过设定阈值对某像素点是否是边缘点进行判断,利用最大类间差分技术获取最优阈值,自适应选择合理阈值,以降低假边缘现象的出现概率,提高边缘连续效果。对视频边缘轮廓区域的增强处理,得到有效的边缘检测结果。实验结果表明,所提算法检测结果伪边缘较少,图像边缘检测质量高,噪声少。 相似文献
16.
图像数据有时有必要交给第三方设备进行处理。为了保护图像安全,需要对图像进行加密及进行加密域图像处理。在此背景下,提出了一种新的加密域图像处理算法。图像拥有方采用一种分块置乱像素位置的加密算法对噪声图像进行加密,再传送给图像去噪方对加密的噪声图像进行开关中值滤波处理,最后图像接收方通过密钥恢复像素位置得到解密后的去噪图像。在MATLAB平台下进行了算法仿真设计,并测试了典型图像的去噪效果,实验结果表明,该算法在保护图像安全的前提下,能有效地去除图像的噪声点,保留图像的非噪声点,去噪性能较好。 相似文献