首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
铟锡氧化物(ITO)是一种重要的半导体材料,制备团聚轻、颗粒细小的ITO纳米粉体具有重要的意义。在500℃下煅烧铟锡氢氧化物[Sn:In(OH)3]和NaCl的混合粉末2h,然后冷却并经过水洗制备ITO纳米粉体。XRD和TEM研究结果表明,利用NaCl颗粒能有效阻止纳米粉体硬团聚的形成。ITO纳米粉体结晶良好,平均颗粒尺寸为18min,尺寸分布窄、团聚轻。本工艺为合成无机纳米粉体提供了一种新的方法。  相似文献   

2.
采用水热法制备了一系列纳米硅铝酸盐材料,考察了晶化时间、模板剂、硅源、铝源、稀土离子掺杂等对材料制备的影响.发现以TEAOH为模板剂,白炭黑为硅源,硫酸铝为铝源,铈离子掺杂制备的硅铝酸盐在苯甲醛与吲哚的Friedel-Crafts烷基化反应中的催化活性最好.通过XRD,BET和SEM表征了该材料的结构特性.  相似文献   

3.
Crystalline open-framework inorganic materials have been widely studied because of the wide variety of the structures as well as their applications in heterogeneous catalysis, adsorption and ion exchange[1,2]. Of many open-framework solids, metal phosphates are an important family of materials, a large number of aluminum phos-phates[3,4], gallium phosphates[5—7], zinc phosphates[8—10], cobalt phosphate[11], beryllium phosphates[12—14] have been prepared and characterized. Recently, open-fra…  相似文献   

4.
Nanosized tin-doped indium oxide (ITO) with different phase formation and morphologies has been successfully synthesized by two different soft chemical methods: combustion synthesis from the aqueous tin and indium nitrate solution containing urea as the fuel and hydrothermal treatment of the solution with the urea as the mineralizer. The sub?micrometer ITO nanoclusters with stratified morphology were obtained by calcining the obtained precursor from combustion process at 600℃ for one hour. However, by utilizing urea as the mineralizer during the hydrothermal treatment, the obtained ITO powders exhibit a composite morphology consisting of spheres and rods after calcining at 600℃ for one hour. Both of the processing routes yield a two-phase mixture consisting of rhombohedral and cubic forms of ITO.  相似文献   

5.
直接沉淀法纳米氧化锌的制备及表征   总被引:1,自引:0,他引:1  
以ZnCl2.2H2O和无水(NH4)2CO3为原料,采用直接沉淀法制备了纳米氧化锌.TG-DTG-DTA、IR分析结果表明,前驱体为碱式碳酸锌[Zn5(OH)6(CO3)2].前驱体经300℃煅烧1 h、2 h、3 h后分别得到粒径不同的纳米氧化锌.用XRD、TEM和BET等进行表征,300℃煅烧2 h得到的纳米氧化锌的最小粒径约为8 nm,最大约为15 nm,平均粒径约为12 nm,比表面积为80.56 m2/g,纯度达99.9%以上,结果较为满意.  相似文献   

6.
以水为溶剂、CuCl2,InCl3和Se粉为反应物、NaBH4为还原剂采用低温水热法在200℃反应18h得到了CuInSe2纳米粉末.用X射线粉末衍射仪、X射线光电子能谱仪、场发射扫描电子显微镜、透射电子显微镜对粉体的结构、形貌、成分进行表征.研究表明:所生成纳米粉末的平均颗粒直径在100nm左右;反应温度和时间对产物的生成和形貌有重要影响,在200℃以上反应有利于获得黄铜矿型CuInSe2纳米粉末的纯相,且产物的尺寸随着反应时间的延长而增大.并对CuInSe2粉体的形成机理进行了简单探讨.  相似文献   

7.
水热法制备单质铜   总被引:5,自引:2,他引:5  
用乙二胺,联苯二酸,CuCl2在酸性条件下采用水热法制得到了晶形良好、纯度较高的单质铜,并对得到的产物进行了元素分析及TG分析.在此基础上,对本体系的反应机理进行了初步探讨,发现酸性介质和水热条件都有助于增强乙二胺的还原性.  相似文献   

8.
非水溶剂法制备纳米硫化铜微粉   总被引:1,自引:0,他引:1  
以无水乙醇为溶剂,用CuSO4.5 H2O及Na2S.9 H2O为原料,十二烷基苯磺酸钠(SDBS)为表面活性剂,采用非水溶剂法制备了纳米硫化铜粉体。实验研究了最佳制备条件,并对产品进行了一系列表征。最佳条件为:[Cu2 ]=0.002 3 mol/dm3,[S2-]=0.002 4 mol/dm3,[SDBS]=0.002 3 mol/dm3。硫化铜的平均粒径为30 nm,已达到纳米量级。  相似文献   

9.
本文比较了各类表面活性剂对铟和铁试剂荧光反应的增敏作用,其中溴化十六烷基三甲基铵(CTMAB)效果最好.建立了铟的荧光测定的最佳条件.CTMAB的存在,使反应的灵敏度提高了4倍.用于纯锡和粉煤灰试样中铟含量的测定,结果满意.  相似文献   

10.
The mesoporous nanocrystalline zircoina was synthesized via solid state reaction structure directing method in the presence of Laponite. The introduction of Laponite renders the higher thermal stability and lamellar track to the zireonia. Laponite acts as inhibitor for crystal growth and also hard template for the mesostructure. The role of Laponite is attributed to the interaction between the zireonia precursors and the nano-platelets of Laponite via the bridge of hydrophilic segments of surfactant. It results in the formation of Zr-O-Mg-O-Si frameworks in the direction of Laponite layer with the condensation of frameworks during the calcination process, which contributes the higher stability and lamellar structure to the nano-sized zireonia samples.  相似文献   

11.
The mesostructure at the cross section of the Fe-based nanocrystalline (Fe73.5Cu1Nb3Si13.5B9) ribbon was observed with atomic force microscopy (AFM). An apparent mesostruetural difference was found between the sticking roller face area (SRFA) and the free face area (FFA) of the ribbon crystallized after annealing. In SRFA there is a preponderance of rough grain gathering in longitudinal arrangement, while in FFA a fine grain gathering arranged transversely dominates. This phenomenon could be due to the different residual stress remained in the different areas of the amorphous ribbon resulting from the single-roller quenching technique.  相似文献   

12.
The macroscopic and microscopic magnetic properties for amorphous and nanocrystalline Fe73.5Cu1Nb3- Si13.5B9 powder have been investigated and their giant magneto-impedance (GMI) effect is reported for the first time. The experimental results show that powder sample annealed at 510℃ possesses the optimum soft magnetic properties. However, the maximum longitudinally driven GMI (LDGMI) ratio (about 52%) is found in the sample annealed at 600℃. This means that the LDGMI ratio depends on not only their magnetic properties but also their electric properties.  相似文献   

13.
14.
银氧化锡触点材料的水热制备及组织分析   总被引:1,自引:0,他引:1  
利用水热法制备AgSnO2粉体,压制烧结后制得AgSnO2块体样品. 对AgSnO2粉体样品进行X射线衍射、扫描电镜和能谱分析,结果表明:通过在溶液体系中实现银和二氧化锡的共沉积,水热法能制得颗粒细小均匀的球形AgSnO2复合粉体. 块体样品X射线衍射谱表明,水热法制备的AgSnO2粉体由于改变了Ag和SnO2的结合状态,烧结时二氧化锡晶体在(110)晶面上表现出一定的择优取向. 对块体样品的显微组织分析表明,AgSnO2块体样品能够克服氧化物的聚集,二氧化锡颗粒在银基体中均匀弥散分布.  相似文献   

15.
16.
17.
18.
LiMn2O4由于电压高、价格便宜、对环境基本无污染而成为最有希望的备选正极材料之一.大量实验研究表明,制备方法和制备条件的不同会在很大程度上影响LiMn2O4材料的性能.以Mn(CH3COO)2.4H2O和Na2S2O8为原料,采用低温水热法制得纳米晶前驱体β-MnO2粉末,然后将前驱体β-MnO2粉末与LiOH.H2O混合后煅烧即可制得纳米晶LiMn2O4.结果表明,LiMn2O4粉末晶化程度高,粒度分布较窄,平均粒径约在250nm,用所得的粉末样品进行电化学性能侧试,其首次放电比容量可达130.5,mA.h/g,循环性能也较好.  相似文献   

19.
以SnCl2·2H2O、聚乙二醇400(PEG400)和Na3C6H5O7·2H2O为主要原料,采用简单的水热法制备了SnO2负极材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)表征其组成和微观形貌,并采用恒流充放电测试、循环伏安法(CV)对样品进行电化学性能测试.结果表明:添加PEG400可以有效改善SnO2表面形貌,减少其团聚现象并且使其电化学性能明显提高.当添加量为10 mL时,合成的SnO2具有良好的循环及倍率性能,首次放电比容量为2 774 mAh/g,循环50次后放电比容量为600 mAh/g,电化学性能较改性前的SnO2有了明显改善.  相似文献   

20.
《科学通报(英文版)》1996,41(16):1396-1396
Investigation on the synthetic structural and functional properties as well as applications of the nanomaterials has become a quite common subject that people focus on. CeO_2 is a cheap material extensively used in the areas of luminous materials, catalysts, electronic ceramics, etc. Cytochrome C is a metallic protein molecule (?)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号