首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用焊接热模拟技术,结合OM、SEM、TEM及-40℃低温冲击韧性实验,研究了焊接热循环(不同峰值温度和t_(8/5)参数)对P460NL1高强正火容器钢热影响区组织和低温韧性的影响,重点分析了不同焊接热循环中强化相V(C,N)粒子的演变。结果显示,当t_(8/5)同为45 s时,P460NL1钢模拟热影响区的低温冲击韧性随峰值温度的升高大致呈降低趋势,且温度超过1200℃后冲击韧性急剧降低。峰值温度为1350、1200℃且t_(8/5)在15~100 s范围时,模拟的是P460NL1钢焊接热影响区粗晶区,组织主要为铁素体和贝氏体混合组织,此条件下P460NL1钢的低温冲击韧性较低且基本不随t_(8/5)的变化而变化;t_(8/5)为45 s时,峰值温度1100、950℃对应的是焊接热影响区细晶区,此时组织为铁素体+贝氏体+珠光体混合组织,峰值温度870℃模拟的是两相区,主要为铁素体和珠光体组织。利用Thermal-Calc软件计算得到P460NL1钢中V(C,N)溶解温度为1160℃,故当峰值温度超过1200℃时,V(C,N)粒子完全溶解且未再析出,基体中存在的游离N会降低P460NL1钢的低温冲击韧性,且当峰值温度为1350℃时,随着t_(8/5)增加,晶粒尺寸逐渐增大,但冲击韧性却没有因此而降低,表明游离氮是热影响区粗晶区冲击韧性的关键因素。  相似文献   

2.
利用热模拟技术及光学显微镜、透射电镜研究了焊接热循环参数对大线能量焊接用船板钢热影响区组织和性能的影响.发现模拟焊接热影响区组织主要由粒状贝氏体、铁素体和珠光体组成,且随着峰值温度和冷却时间的变化,热影响区的组织发生较大的变化;热影响区的冲击韧性总体水平较高,均在200 J以上,冲击韧性并不随着峰值温度和冷却时间的增加而单调变化;热影响区M-A岛的数量、尺寸、分布和形态影响热影响区的韧性.  相似文献   

3.
利用热模拟技术及光学显微镜、透射电镜研究了焊接热循环参数对大线能量焊接用船板钢热影响区组织和性能的影响.发现模拟焊接热影响区组织主要由粒状贝氏体、铁素体和珠光体组成,且随着峰值温度和冷却时间的变化,热影响区的组织发生较大的变化;热影响区的冲击韧性总体水平较高,均在200 J以上,冲击韧性并不随着峰值温度和冷却时间的增加而单调变化;热影响区M-A岛的数量、尺寸、分布和形态影响热影响区的韧性.  相似文献   

4.
二次热循环对管线钢在役焊接粗晶区显微组织的影响   总被引:1,自引:0,他引:1  
采用焊接热模拟技术、金相分析及透射电镜研究了X70管线钢在役焊接粗晶区及其经受不同峰值温度二次焊接热循环作用后热影响区各区的金相组织和精细结构. 结果表明,在役焊接粗晶区的金相组织主要是板条束贝氏体和粒状贝氏体,经历不同峰值温度的二次热循环后,组织类型没有发生变化,但各种组织的形态、大小、数量以及原奥氏体晶粒大小有些差异. 热影响区各区的主要形貌都是铁素体板条和分布在板条之间或板条基体上的M-A组元. 在役焊接粗晶区M-A组元形态以条状为主,经历二次热循环后,再热临界粗晶区的M-A组元有所细化. 再热临界粗晶区存在下贝氏体组织,且具有典型的"中脊"形貌.  相似文献   

5.
利用热模拟试验测定耐火钢Q420FRE在不同焊接热循环下的热膨胀曲线,结合显微组织观察及硬度测试结果,绘制其焊接热影响区的连续冷却转变(SH-CCT)曲线,分析t_(8/5)(从800℃到500℃的冷却时间)对试验钢组织、硬度及相转变速率的影响。结果表明,在较大的t8/5范围内,Q420FRE钢热影响区组织均以贝氏体为主,硬度(HV0.2)变化范围为185~208,与母材基本相当;试验钢具有较高的贝氏体转变温度,随着t8/5的减小(除50、80s外),即冷却速率的增加,贝氏体相变开始温度和结束温度逐渐降低,相变速率增大,相变温度区间变化不明显;当t_(8/5)为50、80s时,相变速率有所降低,相变温度区间稍有增大。  相似文献   

6.
含硼低合金高强度钢焊接热影响区冲击韧度   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机对含硼低合金高强度钢板进行不同焊接工艺下的热模拟实验,研究了焊接热影响区(HAZ)的过热区显微组织、韧度及其变化规律.结果表明:钢板过热区冲击韧度随冷却时间t8/3的增大而显著降低;当t8/3小于67s时,过热区冲击韧度较高,相应过热区组织为板条马氏体或板条马氏体+贝氏体,晶粒较细小.800MPa级低碳贝氏体钢板焊接工艺实验结果表明,焊接热输入量为0.96~2.11kJ.mm-1、焊道间温度为150~200℃和焊后热处理,焊接接头焊缝金属和焊接热影响区的冲击韧度保持较高水平,说明钢板对焊接工艺有较强的适应性.  相似文献   

7.
X-60微合金钢的焊接接头韧性   总被引:2,自引:0,他引:2  
利用光学显微镜、金属薄膜TEM分析、电子显微分析、CHARPY冲击试验和COD试验,研究了X-60钢的CG-HAZ组织中第二相粒子行为以及焊接接头韧性.结果表明,细小弥散的第二相粒子能有效地阻碍焊接热影响区粗晶区的原奥氏体晶粒长大,改善该区域的韧性.不同的800~500℃冷却时间,第二相粒子在热循环过程中溶解、粗化以及再析出行为不同,因而其阻碍奥氏体晶粒长大的能力也不同.t8/5由10s增大到70s时,CG-HAZ显微组织由上贝氏体+粒状贝氏体转变为粒状贝氏体,且奥氏体晶粒尺寸稍有长大,因此其韧性略有下降.  相似文献   

8.
采用热模拟试验技术,研究了X100管线钢焊接热影响区的组织与性能变化规律,结果表明:采用高Nb、微Ti设计的低碳X100管线钢的焊接粗晶区经焊接热循环后仍保持良好的韧性。焊接热影响区的脆化区出现在峰值温度为750℃的两相区。沿原奥氏体晶界形成的岛状组织是导致韧性降低的主要原因。  相似文献   

9.
430铁素体不锈钢在焊接时,热影响区晶粒粗化会使接头韧性下降.利用热模拟技术和焊剂带约束电弧超窄间隙焊接方法对430铁素体不锈钢进行试验,得到不同热输入下粗晶区的组织,并测试其韧性性能.结果表明:当热输入低于3kJ/cm时,粗晶区组织主要为板条贝氏体和少量针状铁素体,铁素体晶粒尺寸小于48μm,室温冲击功与母材相当.铁素体晶粒不断长大是造成冲击韧性下降的主要原因.采用超窄间隙焊接方法,可以有效缩短高温停留时间,将铁素体晶粒尺寸限制在50μm以内,从而使韧脆转变温度降低至约-30℃,避免粗晶区韧性下降.  相似文献   

10.
P460NL1钢的焊接热影响区粗晶区组织和性能   总被引:1,自引:0,他引:1  
利用焊接热模拟手段和冲击实验方法研究了国产新型低合金高强钢P460NL1焊接热影响区(HAZ)粗晶区的组织和性能在连续冷却转变过程中的变化,发现随着800℃到500℃冷却时间(t8/5)的增加,该区的组织、性能都随之而发生变化,当t8/520s,t8/5<60s时,热影响区粗晶区组织为羽毛状上贝氏体、铁素体,其性能逐渐变坏·因而在实际生产中建议严格限制使用大的焊接线能量,以确保焊接热影响区的机械性能·  相似文献   

11.
对一种不添加其他微合金元素的低碳Nb-B微合金贝氏体钢在不同工艺的组织和力学性能进行研究.结果表明,终轧温度为850℃,冷却速度10℃/s左右,终冷温度560℃时,实验钢的屈服强度和抗拉强度分别为495和720MPa,-20℃冲击功和延伸率分别为159 J和23%,实验钢组织为粒状贝氏体和准多边形铁素体;终冷温度降至480℃,实验钢组织为粒状贝氏体,屈服强度和-20℃冲击功分别提高51 MPa和93 J;终轧温度降至810℃时,屈服强度相对增加24MPa;冷却速度增大到25℃/s,组织为粒状贝氏体、少量的针状铁素体和板条贝氏体,屈服强度和抗拉强度分别为655和777 MPa,而-20℃冲击功和...  相似文献   

12.
研究了35CrNi3MoV厚壁高压容器钢经不同速度淬火后的组织与性能,结果表明,淬火速度小于1000℃/h时,形成马氏体+贝氏体混合组织。淬火速度在30-240℃/h时,由于大量的粒状小氏体及上贝氏体形成.使强度及冲击韧性降低,40℃冲击断口出现准解理特征.然而,淬火速度在380~1000℃/h时.少量的下贝氏体形成(贝氏体相对量小于30%),屈服强度和-40℃冲击断口(韧窝花样)则得到改善。初步分析了显微组织对力学性能的影响。  相似文献   

13.
研究了5NiCrMo低温钢的淬火+临界淬火+回火(QLT)热处理工艺,分析了回火温度对该钢组织和力学性能的影响。结果表明:试验钢经QLT热处理后,形成了回火马氏体、-铁素体与逆转变奥氏体的混合组织。560-640℃回火时,随温度提高,屈服强度降低,100℃冲击功先升高、在620℃回火时达到峰值后降低。深冷后保留的逆转变奥氏体显著影响试验钢的低温韧性。拉伸和冲击性能均满足要求的回火温度是600-620℃。  相似文献   

14.
通过扫描电子显微镜、透射电子显微镜以及相应的力学性能测试,观察和分析了X100级管线钢塑性形变前后的微观组织及其韧性变化情况.结果表明:在相同的温度和时间条件下,随着应变量增加,针状铁素体和粒状贝氏体组织均发生形变,高密度位错在M/A岛周围积聚并形成亚晶界和晶界;形变后的晶粒变小,内部仍分布着许多亚晶界结构,且晶界的M/A组织和形变后组织内部缺陷降低了材料的冲击功;X100级管线钢在-34 °C以内的应变时效敏感系数满足要求.  相似文献   

15.
本文研究了不同回火工艺条件下热轧态U25CrNi高强贝氏体钢轨的组织与力学性能变化。结果表明,试验钢热轧态和回火组织均由贝氏体、马氏体和残余奥氏体构成。当回火条件为300℃×200min时,试验钢中部分残余奥氏体发生贝氏体相变,钢的各项力学性能变化不大;当回火温度升至400℃时,试验钢中残余奥氏体体积分数较大,碳化物析出量较少,内应力进一步释放,试验钢的延伸率和冲击吸收功达到最大值,同温度下延长回火时间至360min,钢中碳化物颗粒析出增多,延伸率和冲击性能明显降低;当回火温度为500℃时,试验钢中贝氏体铁素体明显粗化,并伴随大量碳化物颗粒析出,残余奥氏体大量分解,出现了回火脆性。综合考虑,U25CrNi热轧高强贝氏体钢轨的最佳回火工艺为400℃×200min。  相似文献   

16.
00Cr12Ni不锈钢焊接热影响区的组织及韧性   总被引:1,自引:0,他引:1  
采用Gleeble3800热力模拟试验机模拟了00Cr12Ni不锈钢不同热输入下的焊接热循环.研究了热模拟试样的组织及冲击韧性.实验结果表明,焊接粗晶区晶粒大小和马氏体的体积分数均随热输入的增加而增加;细晶区组织以马氏体为主,有少量的铁素体,晶粒非常细小;焊接粗晶区试样的室温冲击功随热输入的增加而降低;不同热输入下,细晶区模拟试样均具有优良的冲击韧性;粗晶区冲击试样均为脆性断裂,而细晶区冲击试样均为韧性断裂;为得到组织细小、韧性优良的焊接热影响区,应尽量采用小的热输入规范.  相似文献   

17.
为了开发新一代冷轧低合金超高强钢,利用连续退火实验机对Ti-0.12%、Nb-0.076%的冷轧低合金超高强钢进行连续退火实验,设计了760~830℃四种不同退火温度,研究了退火温度对实验钢的相组成、晶粒尺寸和力学性能的影响.在800℃退火、400℃过时效的条件下,可得到铁素体和少量贝氏体的组织,铁素体晶粒尺寸约为1.4μm,屈服强度可达700 MPa.同时利用扫描电镜和透射电镜观察到钢中存在大量纳米尺寸的亚晶结构、少量位错以及纳米级的Ti、Nb的析出物,这些微结构单元对强度有较大的提升作用.  相似文献   

18.
对一种新型空冷贝氏体钢的热形变工艺进行了研究,分析了此钢经三种温度热形变并以不同冷速处理后的显微组织及冲击性能。结果表明,试验钢在1050—1100℃加热后缓冷到680℃进行热变形,沿原奥氏体晶界有块状铁素体析出,组织较为粗大,将获得低的冲击韧性。而经880℃热形变后,不存在铁素体块,贝氏体组织也较为细小,可获得较高的冲击韧性。880℃形变后等温1min空冷,得到的贝氏体束短小、交叉分割且均匀,这种组织使试验钢具有优良的性能指标。  相似文献   

19.
在热模拟实验机上进行不同变形温度和冷却速度试验,研究低温区变形温度和冷却工艺对CSP生产线上微合金高强度钢的组织和性能的影响.试验结果表明,变形应在单相奥氏体区内完成,适当降低变形温度有利于得到细小均匀的贝氏体组织;冷却速度对贝氏体组织有明显影响,冷却速度越快,贝氏体组织越细小,强度越高.  相似文献   

20.
超低碳贝氏体钢HAZ组织、性能及硼分布   总被引:2,自引:1,他引:1  
用Gleeble-1500热模拟机对Cu-Nb-B系超低碳贝氏体钢进行不同焊接工艺下热模拟试验,选定峰值温度为1340℃,高温停留0.5s,t8/5分别取30,45,60s。研究了焊接热影响区组织,性能和硼的分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号