首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The hepatic lipogenic enzyme levels are more in rats on a fatfree diet and less in unsaturated fat-fed rats, the saturated fat-fed ones remaining in between.  相似文献   

2.
3.
Human cerebral artery strips relaxed in response to non-adrenergic, non-cholinergic vasodilator nerve stimulation by electrical pulses or nicotine. The relaxation response was abolished by treatment with NG-nitro-L-arginine, a nitric oxide synthase inhibitor; the inhibitory effect was reversed by L-, but not D-, arginine. Nitric oxide-induced relaxation was unaffected. These findings support the hypothesis that nitric oxide plays a crucial role, possibly as neurotransmitter, in transmitting information from vasodilator nerve to smooth muscle in human cerebral arteries.  相似文献   

4.
Inhaled nitric oxide (NO) is used to treat various cardiopulmonary disorders associated with pulmonary hypertension. The rationale is based on the fact that NO, given by inhalation, only dilates those pulmonary vessels that perfuse well-ventilated lung units. As a result, pulmonary gas exchange is improved while pulmonary vascular resistance is reduced and pulmonary blood flow is increased. Inhaled NO has been succesfully applied to treat persistent pulmonary hypertension of the newborn, reducing the need for extracorporeal life support. Although pulmonary hypertension and altered vasoreactivity contribute to profound hypoxaemia in adult and paediatric acute respiratory distress syndrome (ARDS), the benefit of inhaled NO still remains to be established in patients with ARDS. ARDS is a complex response of the lung to direct or indirect insults, leading to pulmonary vasoconstriction and various inflammatory responses. Recent randomized trials suggest that inhaled NO only causes a transient improvement in oxygenation. Whether this effect is important in the long-term management of ARDS remains to be established. NO, measured in the exhaled breath, is an elegant and non-invasive means to monitor inflammation of the upper and lower respiratory tract. In the normal upper airways, the bulk of exhaled NO originates from the paranasal sinuses. Exhaled NO is increased in nasal allergy and decreased in cystic fibrosis, nasal polyposis and chronic sinusitis. That NO production is increased in asthmatic airways is also well established. However, several questions still need to be addressed, in particular evaluation of the sensitivity and specificity of the measurement techniques, and assessment of the bronchodilator action of endogenous NO.  相似文献   

5.
6.
7.
8.
Endothelium-derived nitric oxide and vascular physiology and pathology   总被引:13,自引:0,他引:13  
In 1980, Furchgott and Zawadzki demonstrated that the relaxation of vascular smooth muscle cells in response to acetylcholine is dependent on the anatomical integrity of the endothelium. Endothelium-derived relaxing factor was identified 7 years later as the free radical gas nitric oxide (NO). In endothelium, the amino acid L-arginine is converted to L-citrulline and NO by one of the three NO synthases, the endothelial isoform (eNOS). Shear stress and cell proliferation appear to be, quantitatively, the two major regulatory factors of eNOS gene expression. However, eNOS seems to be mainly regulated by modulation of its activity. Stimulation of specific receptors to various agonists (e.g., bradykinin, serotonin, adenosine, ADP/ATP, histamine, thrombin) increases eNOS enzymatic activity at least in part through an increase in intracellular free Ca2+. However, the mechanical stimulus shear stress appears again to be the major stimulus of eNOS activity, although the precise mechanisms activating the enzyme remain to be elucidated. Phosphorylation and subcellular translocation (from plasmalemmal caveolae to the cytoskeleton or cytosol) are probably involved in these regulations. Although eNOS plays a major vasodilatory role in the control of vasomotion, it has not so far been demonstrated that a defect in endothelial NO production could be responsible for high blood pressure in humans. In contrast, a defect in endothelium-dependent vasodilation is known to be promoted by several risk factors (e.g., smoking, diabetes, hypercholesterolemia) and is also the consequence of atheroma (fatty streak infiltration of the neointima). Several mechanisms probably contribute to this decrease in NO bioavailability. Finally, a defect in NO generation contributes to the pathophysiology of pulmonary hypertension. Elucidation of the mechanisms of eNOS enzyme activity and NO bioavailability will contribute to our understanding the physiology of vasomotion and the pathophysiology of endothelial dysfunction, and could provide insights for new therapies, particularly in hypertension and atherosclerosis.  相似文献   

9.
A review of the literature suggests that the effects of nitric oxide (NO) on skeletal muscles fibers can be classified in two groups. In the first, the effects of NO are direct, due to nitrosation or metal nitrosylation of target proteins: depression of isometric force, shortening velocity of loaded or unloaded contractions, glycolysis and mitochondrial respiration. The effect on calcium release channels varies, being inhibitory at low and stimulatory at high NO concentrations. The general consequence of the direct effects of NO is to ‘brake’ the contraction and its associated metabolism. In the second group, the effects of NO are mediated by cGMP: increase of the shortening velocity of loaded or unloaded contractions, maximal mechanical power, initial rate of force development, frequency of tetanic fusion, glucose uptake, glycolysis and mitochondrial respiration; decreases of half relaxation time of tetanus and twitch, twitch time-to-peak, force maintained during unfused tetanus and of stimulus-associated calcium release. There is negligible effect on maximal force of isometric twitch and tetanus. The general consequence of cGMP-mediated effects of NO is to improve mechanical and metabolic muscle power, similar to a transformation of slow-twitch to fast-twitch muscle, an effect that we may summarize as a ‘slow-to-fast’ shift.  相似文献   

10.
Nitric oxide (NO) is a recently discovered mediator produced by mammalian cells. It plays a key role in neurotransmission, control of blood pressure, and cellular defense mechanisms. Nitric oxide synthases (NOSs) catalyze the oxidation of L-arginine to NO and L-citrulline. NOSs are unique enzymes in that they possess on the same polypeptidic chain a reductase domain and an oxygenase domain closely related to cytochrome P450s. NO and superoxide formation as well as NOS stability are finely regulated by Ca2+/calmodulin interactions, by the cofactor tetrahydrobiopterin, and by substrate availability. Strong interactions between the L-arginine-metabolizing enzymes are clearly demonstrated by competition between NOSs and arginases for L-arginine utilization, and by potent inhibition of arginase activity by Nω-hydroxy-L-arginine, an intermediate in the L-arginine to NO pathway.  相似文献   

11.
Résumé Escherichia coli traité au NO présente le même nombre de cellules vivantes et la même courbe exponentielle de croissance, mais la phase latente, qui dépend de la concentration du NO, est prolongée.  相似文献   

12.
The pattern of cytochrome c oxidase inhibition by nitric oxide (NO) was investigated polarographically using Keilin-Hartree particles, mitochondria and human neuroblastoma cells. NO reacts with purified cytochrome c oxidase forming either a nitrosyl- or a nitrite-inhibited derivative, displaying distinct kinetics and light sensitivity of respiration recovery in the absence of free NO. Keilin-Hartree particles or cells, respiring either on endogenous substrates alone or in the presence of ascorbate, as well as state 3and state 4mitochondria respiring on glutamate and malate, displayed the rapid recovery characteristic of the nitrite derivative. All systems, when respiring in the presence of tetramethyl-p-phenylenediamine, were characterised by the slower, light-sensitive recovery typical of the nitrosyl derivative. Together the results suggest that the reaction of NO with cytochrome c oxidase in situ follows two alternative inhibition pathways, depending on the electron flux through the respiratory chain.Received 1 April 2003; received after revision 22 May 2003; accepted 3 June 2003  相似文献   

13.
The three enzymes of ethanol metabolism alcohol dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase in the obligate aerobic yeast Rhodotorula gracilis are repressed by glucose and induced by C2 metabolic fuels with a regulatory pattern indicating a correlation in the control mechanisms. To try an identification of the molecular signals involved in the transmission of the inducing stimulus, experiments were carried out by blocking with 2 mM pyrazole the ethanol acetaldehyde metabolic step. Results indicate that ethanol is not specifically required as a molecular signal for induction.  相似文献   

14.
Summary The three enzymes of ethanol metabolism alcohol dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase in the obligate aerobic yeastRhodotorula gracilis are repressed by glucose and induced by C2 metabolic fuels with a regulatory pattern indicating a correlation in the control mechanisms. To try an identification of the molecular signals involved in the transmission of the inducing stimulus, experiments were carried out by blocking with 2 mM pyrazole the ethanol acetaldehyde metabolic step. Results indicate that ethanol is not specifically required as a molecular signal for induction.This work was supported by a grant from the Italian Consiglio Nazionale delle Ricerche.  相似文献   

15.
Ikaros is known as a critical regulator of lymphocyte development. We examined the regulatory role of Ikaros in LPS/IFN-gamma-induced inducible nitric oxide synthase (iNOS) expression by macrophages. Our results showed that IK6 (Ikaros dominant negative isoform) induction increases the iNOS expression. Ikaros DNA binding activity on the iNOS promoter was decreased, and a mutation of the Ikaros-binding site on the iNOS promoter resulted in an increase in LPS/IFN-gamma-induced iNOS expression. LPS/IFN-gamma increased the histone (H3) acetylation on the Ikaros DNA binding site. These results suggest that Ikaros acts as a negative regulator on iNOS expression. Treatment with a casein kinase 2 (CK2) inhibitor reversed LPS/IFN-gamma-induced decrease in Ikaros DNA binding activity. Moreover, overexpression of kinase-inactive CK2 decreased iNOS expression and a significant amount of CK2alpha1 translocated into the nucleus in LPS/IFN-gamma-treated cells. Overall, these data indicate that LPS/IFN-gamma decreases the Ikaros DNA binding activity via the CK2 pathway, resulting in an increase of iNOS expression.  相似文献   

16.
We have observed that treatment of human glioma cells with morphine in the nanomolar range of concentration affects the mitochondrial membrane potential. The effect is specific to morphine and is mediated by naloxone-sensitive receptors, and is thus better observed on glioma cells treated with desipramine; moreover, the mitochondrial impairment is not inducible by fentanyl or methadone treatment and is prevented by the nitric oxide (NO) synthase inhibitor L-NAME. We conclude that in cultured glioma cells, the morphine-induced NO release decreases the mitochondrial membrane potential, as one might expect based on the rapid inhibition of the respiratory chain by NO. The identification of new intra-cellular pathways involved in the mechanism of action of morphine opens additional hypotheses, providing a novel rationale relevant to the therapy and toxicology of opioids.Received 19 August 2004; received after revision 16 September 2004; accepted 7 October 2004  相似文献   

17.
The influence of the proinflammatory cytokine interleukin (IL)-17 on inducible nitric oxide (NO) synthase (iNOS)-mediated NO release was investigated in the mouse insulinoma cell line MIN6 and mouse pancreatic islets. IL-17 markedly augmented iNOS mRNA/protein expression and subsequent NO production induced in MIN6 cells or pancreatic islets by different combinations of interferon-γ, tumor necrosis factor-α, and IL-1β. The induction of iNOS by IL-17 was preceded by phosphorylation of p38 mitogen-activated protein kinase (MAPK), and inhibition of p38 MAPK activation completely abolished IL-17-stimulated NO release. IL-17 enhanced the NO-dependent toxicity of proinflammatory cytokines toward MIN6 cells, while IL-17-specific neutralizing antibody partially reduced the NO production and rescued insulinoma cells and pancreatic islets from NO-dependent damage induced by activated T cells. Finally, a significant increase in blood IL-17 levels was observed in a multiple low-dose streptozotocin model of diabetes, suggesting that T cell-derived IL-17 might be involved in NO-dependent damage of beta cells in this disease. Received 14 June 2005; received after revision 17 September 2005; accepted 21 September 2005  相似文献   

18.
This study examined the changes occurring in the pattern of distribution and expression of neuronal nitric oxide synthase (nNOS)-positive nerves in the gastroduodenal tract of streptozotocin-induced diabetic rats. The ganglion cells of the myenteric plexus of the gastric antrum of normal rats contain nNOS. We also observed nNOS-positive neurons and fibres in the myenteric plexus of the duodenum of normal rats. After the onset of diabetes, the number and intensity of staining of nNOS-positive nerve profiles in the gastric antrum and duodenum did not change significantly. However, Western blotting showed a significant increase in the expression of nNOS after the onset of diabetes. In conclusion, diabetes of 4 and 32 weeks duration induced an increase in the tissue content of nNOS in the gastroduodenum of rat. The increase in the level of nNOS in the gastroduodenum of diabetic rats may explain why impaired gastric emptying is common in patients with diabetes.  相似文献   

19.
Detoxification of pesticides by microbial enzymes   总被引:4,自引:0,他引:4  
L M Johnson  H W Talbot 《Experientia》1983,39(11):1236-1246
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号