首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
V Irish  R Lehmann  M Akam 《Nature》1989,338(6217):646-648
The development of the body plan in the Drosophila embryo depends on the activity of maternal determinants localized at the anterior and posterior of the egg. These activities define both the polarity of the anterior-posterior (AP) axis and the spatial domains of expression of the zygotic gap genes, which in turn control the subsequent steps in segmentation. The nature and mode of action of one anterior determinant, the bicoid(bcd) gene product, has recently been defined, but the posterior determinants are less well characterized. At least seven maternally acting genes are required for posterior development. Mutations in these maternal posterior-group genes result in embryos lacking all abdominal segments. Cytoplasmic transplantation studies indicate that the maternally encoded product of the nanos(nos) gene may act as an abdominal determinant, whereas the other maternal posterior-group genes appear to be required for the appropriate localization and stabilization of this signal. Here we show that the lack of the nos gene product can be compensated for by eliminating the maternal activity of the gap gene hunchback (hb). Embryos lacking both of these maternally derived gene products are viable and can survive as fertile adults. These results suggest that the nos gene product functions by repressing the activity of the maternal hb products in the posterior of the egg.  相似文献   

2.
M Hülskamp  C Schr?der  C Pfeifle  H J?ckle  D Tautz 《Nature》1989,338(6217):629-632
Maternal hunchback activity suppresses the genetic pathway for abdomen formation in the Drosophila embryo. The active component of the posterior group of maternal genes, nanos, acts as a specific repressor of hunchback in the posterior region. Absence of both repressors results in normal embryos, indicating that posterior segmentation may not directly require maternal determinants.  相似文献   

3.
Control of neuronal fate by the Drosophila segmentation gene even-skipped   总被引:10,自引:0,他引:10  
C Q Doe  D Smouse  C S Goodman 《Nature》1988,333(6171):376-378
The central nervous system (CNS) contains a remarkable diversity of cell types. The molecular basis for generating this neuronal diversity is poorly understood. Much is known, however, about the regulatory genes which control segmentation and segment identity during early Drosophila embryogenesis. Interestingly, most of the segmentation and homoeotic genes in Drosophila, as well as many of their vertebrate homologues, are expressed during the development of the nervous system (for example, ref. 3). Are these genes involved in specifying the identity of individual neurons during neurogenesis, just as they specify the identity of cells during segmentation? We previously described the CNS expression of the segmentation gene fushi tarazu (ftz) and showed that ftz CNS expression is involved in the determination of an identified neuron. Here we show that another segmentation gene, even-skipped (eve), is expressed in a different but overlapping subset of neurons. Temperature-sensitive inactivation of the eve protein during neurogenesis alters the fate of two of these neurons. Our results indicate that the nuclear protein products of the eve and ftz segmentation genes are components of the mechanism controlling cell fate during neuronal development.  相似文献   

4.
J Treisman  C Desplan 《Nature》1989,341(6240):335-337
The first zygotic genes to be expressed during early Drosophila development are the gap genes. Their role is to read and interpret coarse positional information deposited in the egg by the mother and to refine it by cross-regulatory interactions and by controlling a class of pair-rule genes. Little is known about the molecular mechanisms by which the three cloned gap genes carry out their genetically defined functions. Here we report that the Krüppel (Kr) gene product (Kr) binds to the sequence AAGGGGTTAA, whereas the hunchback (hb) gene product (Hb) recognizes the consensus ACNCAAAAAANTA. We have identified binding sites for these proteins upstream of the two hb promoters, which we suggest could mediate the repression of hb by Kr and perhaps allow hb to influence its own expression.  相似文献   

5.
Maternal control of Drosophila segmentation gene expression   总被引:5,自引:0,他引:5  
S B Carroll  G M Winslow  T Schüpbach  M P Scott 《Nature》1986,323(6085):278-280
Several genes have been identified that are involved in establishing the segmented body pattern during development of the fruit-fly Drosophila melanogaster. These fall into several classes on the basis of the kind of alteration to the wild-type segmentation pattern observed in mutant embryos. For example, mutations of the pair-rule class, such as fushi tarazu (ftz), cause the deletion of pattern elements with a two-segment periodicity; those of the gap class, such as knirps, cause the deletion of contiguous groups of segments. The availability of antibodies against the ftz protein has allowed its spatial pattern of expression to be studied during the development of wild-type and mutant embryos. The aim of the latter kind of experiment is to investigate possible interactions between these important genes. We have recently reported that knirps mutations cause a striking alteration to the pattern of transverse stripes of ftz expression usually seen during embryogenesis. Knirps is a zygotically-expressed gene, but recently a class of maternally-active genes has been identified that causes similar defects in pattern formation. We have now investigated the pattern of ftz expression in mutants of this class and have found that while they do have features seen in knirps mutants, they also exhibit significant differences between the different mutations reflecting the distinct but overlapping domains of gene activity. These observations demonstrate that maternally-active segmentation genes regulate zygotic gene expression, and that some of their effects on ftz may be directed through the knirps gene.  相似文献   

6.
果蝇的全基因组的序列测定早已完成,但是,对于基因之间是如何相互调控以实现复杂的生物功能,还需要深入的研究.认识并解析复杂的基因调控网络的构成和动力学机制,已成为现代生命科学中的前沿课题之一.在本文中,我们重点研究了果蝇的胚胎发育过程中图式形成的体极性基因网络调控.这一调控是通过相邻细胞中的基因网络的相互影响而达成的.本文主要考察这种基因网络调控对于初始条件的稳定性,以此说明生物胚胎发育对于初始条件的相对稳定性.我们发现该调控系统对于特定位置的干扰有极好的稳定性,对于整个系统的小干扰有良好的稳定性.  相似文献   

7.
8.
9.
A gene complex controlling segmentation in Drosophila.   总被引:198,自引:0,他引:198  
E B Lewis 《Nature》1978,276(5688):565-570
The bithorax gene complex in Drosophila contains a minimum of eight genes that seem to code for substances controlling levels of thoracic and abdominal development. The state of repression of at least four of these genes is controlled by cis-regulatory elements and a separate locus (Polycomb) seems to code for a repressor of the complex. The wild-type and mutant segmentation patterns are consistent with an antero-posterior gradient in repressor concentration along the embryo and a proximo-distal gradient along the chromosome in the affinities for repressor of each gene's cis-regulatory element.  相似文献   

10.
11.
12.
Gebelein B  McKay DJ  Mann RS 《Nature》2004,431(7009):653-659
During Drosophila embryogenesis, segments, each with an anterior and posterior compartment, are generated by the segmentation genes while the Hox genes provide each segment with a unique identity. These two processes have been thought to occur independently. Here we show that abdominal Hox proteins work directly with two different segmentation proteins, Sloppy paired and Engrailed, to repress the Hox target gene Distalless in anterior and posterior compartments, respectively. These results suggest that segmentation proteins can function as Hox cofactors and reveal a previously unanticipated use of compartments for gene regulation by Hox proteins. Our results suggest that these two classes of proteins may collaborate to directly control gene expression at many downstream target genes.  相似文献   

13.
Mediation of Drosophila head development by gap-like segmentation genes   总被引:14,自引:0,他引:14  
S M Cohen  G Jürgens 《Nature》1990,346(6283):482-485
  相似文献   

14.
A Laughon  M P Scott 《Nature》1984,310(5972):25-31
Mutations in the fushi tarazu (ftz) locus of Drosophila result in embryos with half the usual number of body segments. The sequences of the wild-type gene, a temperature-sensitive allele and a dominant mutant allele are presented. A portion of the conserved protein domain present in ftz and several homoeotic genes resembles the DNA-binding region of prokaryotic DNA-binding proteins, and is also similar to products of the yeast mating-type locus.  相似文献   

15.
16.
S M Cohen 《Nature》1990,343(6254):173-177
Limb development in Drosophila requires the activity of a proximo-distal pattern-forming system, in addition to the antero-posterior and dorso-ventral pattern-forming systems that subdivide the embryo. Several lines of genetic evidence indicate that the Distal-less gene plays an important part in specifying proximo-distal positional information. The Distal-less locus encodes a homoeodomain-containing protein, which suggests that Distal-less may exert its activity through differential regulation of subordinate genes. The spatially restricted pattern of Distal-less expression allows direct visualization of the limb primordia during early embryogenesis. Here I report that from their inception, the leg primordia span the parasegment boundary. The segment polarity gene wingless seems to have a key part in defining the positions at which leg primordia will develop along the antero-posterior axis of the embryo. This analysis allows a direct molecular visualization of the compartments that subdivide the limb primordia into discrete developmental domains.  相似文献   

17.
Cherry M 《Nature》2007,447(7140):26-27
  相似文献   

18.
C N Chen  T Malone  S K Beckendorf  R L Davis 《Nature》1987,329(6141):721-724
The dunce locus of Drosophila melanogaster is considered to house a gene involved in memory, because flies carrying lesions at the locus have shortened memory of several different conditioned behaviours. Our recent partial characterization of the gene at the molecular level, along with prior genetic and biochemical evidence, recently provides compelling evidence that the gene codes for the enzyme cAMP phosphodiesterase. The observation that the gene encodes at least six overlapping poly(A)+ RNA molecules ranging in size from 4.2 to 9.5 kilobases (kb) (ref. 8), suggests that the gene is extraordinarily complex. Here we provide the sequence of a dunce complementary DNA clone and the corresponding genomic coding regions which show that the organization of the gene is elaborate. The cDNA clone defines dunce exons which are separated by a large intron of 79 kb. More importantly, at least two other genes are shown to reside within the large intron, including the well-defined glue protein gene, Sgs-4. The location of dunce exons relative to the molecular breakpoints of chromosomal aberrations with defined cytological positions indicates that the dunce gene extends over more than five polytene chromosome bands.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号