首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cheng J  Türkel N  Hemati N  Fuller MT  Hunt AJ  Yamashita YM 《Nature》2008,456(7222):599-604
Asymmetric division of adult stem cells generates one self-renewing stem cell and one differentiating cell, thereby maintaining tissue homeostasis. A decline in stem cell function has been proposed to contribute to tissue ageing, although the underlying mechanism is poorly understood. Here we show that changes in the stem cell orientation with respect to the niche during ageing contribute to the decline in spermatogenesis in the male germ line of Drosophila. Throughout the cell cycle, centrosomes in germline stem cells (GSCs) are oriented within their niche and this ensures asymmetric division. We found that GSCs containing misoriented centrosomes accumulate with age and that these GSCs are arrested or delayed in the cell cycle. The cell cycle arrest is transient, and GSCs appear to re-enter the cell cycle on correction of centrosome orientation. On the basis of these findings, we propose that cell cycle arrest associated with centrosome misorientation functions as a mechanism to ensure asymmetric stem cell division, and that the inability of stem cells to maintain correct orientation during ageing contributes to the decline in spermatogenesis. We also show that some of the misoriented GSCs probably originate from dedifferentiation of spermatogonia.  相似文献   

2.
Germline stem cells are defined by their unique ability to generate more of themselves as well as differentiated gametes. The molecular mechanisms controlling the decision between self-renewal and differentiation are central unsolved problems in developmental biology with potentially broad medical implications. In Caenorhabditis elegans, germline stem cells are controlled by the somatic distal tip cell. FBF-1 and FBF-2, two nearly identical proteins, which together are called FBF ('fem-3 mRNA binding factor'), were originally discovered as regulators of germline sex determination. Here we report that FBF also controls germline stem cells: in an fbf-1 fbf-2 double mutant, germline proliferation is initially normal, but stem cells are not maintained. We suggest that FBF controls germline stem cells, at least in part, by repressing gld-1, which itself promotes commitment to the meiotic cell cycle. FBF belongs to the PUF family ('Pumilio and FBF') of RNA-binding proteins. Pumilio controls germline stem cells in Drosophila females, and, in lower eukaryotes, PUF proteins promote continued mitoses. We suggest that regulation by PUF proteins may be an ancient and widespread mechanism for control of stem cells.  相似文献   

3.
4.
Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.  相似文献   

5.
6.
7.
Kiger AA  White-Cooper H  Fuller MT 《Nature》2000,407(6805):750-754
Stem cells maintain populations of highly differentiated, short-lived cell-types, including blood, skin and sperm, throughout adult life. Understanding the mechanisms that regulate stem cell behaviour is crucial for realizing their potential in regenerative medicine. A fundamental characteristic of stem cells is their capacity for asymmetric division: daughter cells either retain stem cell identity or initiate differentiation. However, stem cells are also capable of symmetric division where both daughters remain stem cells, indicating that mechanisms must exist to balance self-renewal capacity with differentiation. Here we present evidence that support cells surrounding the stem cells restrict self-renewal and control stem cell number by ensuring asymmetric division. Loss of function of the Drosophila Epidermal growth factor receptor in somatic cells disrupted the balance of self-renewal versus differentiation in the male germline, increasing the number of germline stem cells. We propose that activation of this receptor specifies normal behaviour of somatic support cells; in turn, the somatic cells play a guardian role, providing information that prevents self-renewal of stem cell identity by the germ cell they enclose.  相似文献   

8.
The protein p27Kip1 is an inhibitor of cell division. An increase in p27 causes proliferating cells to exit from the cell cycle, and a decrease in p27 is necessary for quiescent cells to resume division. Abnormally low amounts of p27 are associated with pathological states of excessive cell proliferation, especially cancers. In normal and tumour cells, p27 is regulated primarily at the level of translation and protein turnover. Phosphorylation of p27 on threonine 187 (T187) by cyclin-dependent kinase 2 (Cdk2) is thought to initiate the major pathway for p27 proteolysis. To critically test the importance of this pathway in vivo, we replaced the murine p27 gene with one that encoded alanine instead of threonine at position 187 (p27T187A). Here we show that cells expressing p27T187A were unable to downregulate p27 during the S and G2 phases of the cell cycle, but that this had a surprisingly modest effect on cell proliferation both in vitro and in vivo. Our efforts to explain this unexpected result led to the discovery of a second proteolytic pathway for controlling p27, one that is activated by mitogens and degrades p27 exclusively during G1.  相似文献   

9.
S B Selleck  C Gonzalez  D M Glover  K White 《Nature》1992,355(6357):253-255
In the newly cellularized Drosophila embryo, progress through the cell cycle is regulated at the G2-M transition. We have examined cell-cycle regulation later in Drosophila development, in a group of postembryonic neuronal precursors. The S-phase precursor cells, which generate photoreceptor target neurons (lamina neurons) in the central nervous system, are not present in the absence of photoreceptor innervation. Here we report that axons selectively approach G1-phase precursors. Without axon ingrowth, lamina precursors do not enter their final S phase and by several criteria, arrest in the preceding G1 phase. These findings provide evidence that at this stage in development the control of cell division can occur at the G1-S transition.  相似文献   

10.
Tran J  Brenner TJ  DiNardo S 《Nature》2000,407(6805):754-757
Stem cells divide both to produce new stem cells and to generate daughter cells that can differentiate. The underlying mechanisms are not well understood, but conceptually are of two kinds. Intrinsic mechanisms may control the unequal partitioning of determinants leading to asymmetric cell divisions that yield one stem cell and one differentiated daughter cell. Alternatively, extrinsic mechanisms, involving stromal cell signals, could cause daughter cells that remain in their proper niche to stay stem cells, whereas daughter cells that leave this niche differentiate. Here we use Drosophila spermatogenesis as a model stem cell system to show that there are excess stem cells and gonialblasts in testes that are deficient for Raf activity. In addition, the germline stem cell population remains active for a longer fraction of lifespan than in wild type. Finally, raf is required in somatic cells that surround germ cells. We conclude that a cell-extrinsic mechanism regulates germline stem cell behaviour.  相似文献   

11.
Drosophila neuroblasts and ovarian stem cells are well characterized models for stem cell biology. In both cell types, one daughter cell self-renews continuously while the other undergoes a limited number of divisions, stops to proliferate mitotically and differentiates. Whereas neuroblasts segregate the Trim-NHL (tripartite motif and Ncl-1, HT2A and Lin-41 domain)-containing protein Brain tumour (Brat) into one of the two daughter cells, ovarian stem cells are regulated by an extracellular signal from the surrounding stem cell niche. After division, one daughter cell looses niche contact. It undergoes 4 transit-amplifying divisions to form a cyst of 16 interconnected cells that reduce their rate of growth and stop to proliferate mitotically. Here we show that the Trim-NHL protein Mei-P26 (refs 7, 8) restricts growth and proliferation in the ovarian stem cell lineage. Mei-P26 expression is low in stem cells but is strongly induced in 16-cell cysts. In mei-P26 mutants, transit-amplifying cells are larger and proliferate indefinitely leading to the formation of an ovarian tumour. Like brat, mei-P26 regulates nucleolar size and can induce differentiation in Drosophila neuroblasts, suggesting that these genes act through the same pathway. We identify Argonaute-1, a component of the RISC complex, as a common binding partner of Brat and Mei-P26, and show that Mei-P26 acts by inhibiting the microRNA pathway. Mei-P26 and Brat have a similar domain composition that is also found in other tumour suppressors and might be a defining property of a new family of microRNA regulators that act specifically in stem cell lineages.  相似文献   

12.
G1 cell-cycle control and cancer   总被引:1,自引:0,他引:1  
Massagué J 《Nature》2004,432(7015):298-306
Before replicating DNA during their reproductive cycle, our cells enter a phase called G1 during which they interpret a flood of signals that influence cell division and cell fate. Mistakes in this process lead to cancer. An increasingly complex and coherent view of G1 signalling networks, which coordinate cell growth, proliferation, stress management and survival, is helping to define the roots of malignancies and shows promise for the development of better cancer therapies.  相似文献   

13.
Wee1(+)-like gene in human cells.   总被引:34,自引:0,他引:34  
M Igarashi  A Nagata  S Jinno  K Suto  H Okayama 《Nature》1991,353(6339):80-83
The wee1+ gene is a mitotic inhibitor controlling the G2 to M transition of the fission yeast Schizosaccharomyces pombe and encodes a protein kinase with both serine- and tyrosine-phosphorylating activities. We have cloned a human gene (WEE1Hu) similar to wee1+ by transcomplementation of a yeast mutant. WEE1Hu encodes a protein homologous to the S. pombe wee1+ and mik1+ (a functionally redundant sibling of wee1+) kinases and effectively rescues a wee1 mutation. We report here that overexpression of WEE1Hu in fission yeast generates very elongated cells as a result of inhibition of the G2-M transition in the cell cycle. In addition, we detected a 3-kilobase-long WEE1Hu messenger RNA in all the human cell lines we examined. We conclude that a wee1(+)-like gene exists and is expressed in human cells.  相似文献   

14.
Processing of primary microRNAs by the Microprocessor complex   总被引:4,自引:0,他引:4  
Denli AM  Tops BB  Plasterk RH  Ketting RF  Hannon GJ 《Nature》2004,432(7014):231-235
  相似文献   

15.
HMOX1(Heme Oxygenase 1)属于血红素加氧酶家族,作为血红素分解代谢中的必须酶,在恶性胶质瘤中高表达。脑胶质瘤干细胞(Glioma Stem Cell,GSC)是胶质瘤中的一小群肿瘤细胞,具有无限增殖、自我更新、多向分化的能力,被认为是肿瘤发生、复发、转移的根源。本实验通过质谱筛选,发现HMOX1特异性在胶质瘤干细胞中被低氧诱导高表达。目前关于HMOX1蛋白与缺氧环境下GSC的功能相关性未见文献报道。为了研究HMOX1是否在低氧时对GSC有调控作用,我们用慢病毒感染体系在GSC中敲低HMOX1表达,接着对细胞进行1%O_2低氧培养,用Western Blot检测基因干涉效果,用Tumor Sphere形成实验观察GSC细胞表型。实验结果表明,在低氧条件下干涉GSC中HMOX1基因的表达对GSC的生长及存活有明显的抑制。综上所述,HMOX1在GSC中特异性被低氧诱导高表达,且对GSC的生长存活具有调控作用,提示HMOX1有可能是GSC在低氧微环境中的重要调控因子。  相似文献   

16.
大鼠肝癌细胞株细胞的同步化及其检测   总被引:4,自引:0,他引:4  
细胞增殖分裂是细胞最基本的生理活动。影响细胞增殖分裂归根到底是影响细胞周欺遥运行,细胞周期失控的超常快速运行将导细胞癌变;停滞不前则常是细胞衰老,凋亡的前奏,以大鼠肝癌细胞株(HTC)的细胞为研究对象,探讨了HTC细胞的同步化方法,并经流式细胞仪测定同步率,结果表明:在HTC细胞对数生长期,以胸腺嘧啶核苷和秋水仙碱顺序阻断法及胸腺嘧啶核苷双阻断法可分别获得同步率为72.10%的G1期和98.94%  相似文献   

17.
18.
Cooper S 《Nature》1979,280(5717):17-19
A model to explain the cell division cycle in both prokaryotes and eukaryotes is presented. No specific 'G1 functions' take place during the G1 period, which is merely part of a larger period for the preparation of DNA synthesis which began at the previous initiation of DNA synthesis. A G1 period exists merely because the doubling time of the cells is greater than the sum of the S and G2 periods.  相似文献   

19.
Using the transfeetion teehnique. P15INK4b was introduced into P15INk4b gene deleted human melanoma A375 cells,and a cell model MLED6 overexpressing P15INK4b WAS CONSTRUCTED.Comparing with the control cells MLC2,MLEK6cells in G1phase increased by 11%,but those in Sphase decreased by 15%by FCM.By the method of thymidine(TdR)and N2O arresting,the proportions of synchronized Mphase cells of MLEK6 ana MLC23 were measured and found to be 89.1% and 76.8%respectively ,and the cells in G1phase were 74.3% for MLID6 AND 76. 4% forMLC2.The result of3 H-TdR incorporation indicated that the transition of G1/Sof MLEK6 cell was delayed 2h as compared with that of MLC2 cells,and incorporation rate also decreased.The observation on exprissions of some G1/ S-resates relatory rigusating genes showed that in MLIK6 cells the protein leves of P27KIPI increased with the decreasing expressions of cyclinD1,cyclinE and c-myc,especially cyclinD1 in late G1phade.The expression of cyclinE obviously decreased at G1/S transition ,and c-myc wad inhibited throughout all the process of G1 S phase.All the risults suggest that P15INK4b can delayG1/S transition of MLEK6 cells by inhibiting the cell cycle engine ,and by increasing the expression of Cdk ingibitor P27KIPI in different stages of G1 phase.  相似文献   

20.
Micchelli CA  Perrimon N 《Nature》2006,439(7075):475-479
Adult stem cells maintain organ systems throughout the course of life and facilitate repair after injury or disease. A fundamental property of stem and progenitor cell division is the capacity to retain a proliferative state or generate differentiated daughter cells; however, little is currently known about signals that regulate the balance between these processes. Here, we characterize a proliferating cellular compartment in the adult Drosophila midgut. Using genetic mosaic analysis we demonstrate that differentiated cells in the epithelium arise from a common lineage. Furthermore, we show that reduction of Notch signalling leads to an increase in the number of midgut progenitor cells, whereas activation of the Notch pathway leads to a decrease in proliferation. Thus, the midgut progenitor's default state is proliferation, which is inhibited through the Notch signalling pathway. The ability to identify, manipulate and genetically trace cell lineages in the midgut should lead to the discovery of additional genes that regulate stem and progenitor cell biology in the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号