首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对永磁同步电动机直接转矩控制系统低速时转矩脉动大的问题,基于直接转矩控制理论,分析了低速时转矩脉动大的原因,提出了转矩预测控制方法,并且借助MATLAB/Simulink工具,对基于转矩预测的永磁同步电动机直接转矩控制系统各环节进行了仿真建模,仿真结果表明,该方法能有效地减小转矩脉动,改善低速运行性能.  相似文献   

2.
永磁同步电动机矢量控制和最大转矩控制   总被引:3,自引:0,他引:3  
本文论述了永磁同步电动机的矢量控制方式;明确了其最大转矩控制的概念;研究了不同情况下永磁同步电动机矢量控制和最大转矩控制的相互关系。并得出最大转矩控制的运行和实现条件。  相似文献   

3.
提出了一种以TMS320LF2407A DSP为微控制器的电动汽车驱动控制系统.该系统将永磁同步电动机作为驱动电机,采用基于空间矢量脉宽调制(SVPWM)的直接转矩控制技术.电动汽车采用两轮后置驱动,只需控制一路永磁同步电动机,再通过机械差速及传动装置实现行进.直接转矩控制采用转矩(电流)、速度双闭环控制方案和智能PI...  相似文献   

4.
分析了交流同步发电机电磁转矩特性,将同步发电机转子和电动机转子1∶1同轴连接,通过控制交流同步发电机的电磁转矩,可以对电动机施加不同程度的负载,达到加载的目的.经过理论与实验结果对比分析,证明了本方法的有效性,而且还可以针对不同的加载需求模拟实际工作中不同的负载变化情况.  相似文献   

5.
分析了永磁同步电动机的数学模型,并提出了基于空间电压矢量脉宽调制(SVPWM)的永磁同步电动机直接转矩控制系统.介绍了定子磁链、转矩和电压矢量的估算方法,并在Matlab/Simulink环境下构建了系统的仿真模型,在此基础上进行了大量仿真研究.仿真结果表明,系统具有良好的动、静态特性.  相似文献   

6.
矢量控制理论解决了交流电动机电磁转矩的有效控制,双闭环矢量控制策略提高了同步电动机变频调速系统的动态性能。介绍稀土永磁同步电动机(转子无阻尼绕组)设计和自控式变频调速,典型规格样机实测数据表明具有转矩和转速平稳、同步调速范围宽的优点以及工程实用性。  相似文献   

7.
针对无轴承同步磁阻电动机电磁转矩和径向悬浮力之间存在的强耦合问题,对各种解耦控制方法进行了分析研究.介绍了无轴承同步磁阻电动机的转子悬浮原理和数学模型,总结了国内外无轴承同步磁阻电动机的解耦控制策略,分析了前馈和反馈补偿控制、逆系统控制、神经网络逆控制、支持向量机逆控制、微分几何精确线性化控制、转矩和悬浮力直接控制等解耦控制策略的原理、性能和局限性,讨论了这些控制策略的发展方向.根据无轴承同步磁阻电动机的特点,指出无轴承同步磁阻电动机的未来研究方向:建立考虑磁饱和因素的精确数学模型、电动机参数在线辨识、采用智能控制增加系统的抗干扰能力、解耦控制器的参数优化设计、采用非线性控制理论直接控制非线性系统的策略等.  相似文献   

8.
传统的永磁同步电动机直接转矩控制系统存在着转矩和磁链脉动大、低速运行时难以精确控制以及因转矩脉动引起的高频噪声等问题.为解决这些问题,通过定子电阻观测器,利用定子电流与参考定子电流之差来跟踪定子电阻的变化,实现定子电阻的实时估算;用转矩和磁链滑模变结构控制器来替代传统直接转矩控制中的滞环控制器.仿真结果表明,基于定子电阻观测器的永磁同步电动机滑模变结构直接转矩控制系统具有较小的转矩、磁链脉动和快速的动态响应性能.  相似文献   

9.
文章探讨了永磁同步电动机输入电压不对称运行的动态过程.通过建立数学模型及实时仿真,获得定子电流、感应电动势、电磁转矩、角速度的实时变化曲线.结果表明,永磁同步电动机输入三相不对称电压时,其定子电流、感应电动势、电磁转矩、转速均发生振荡,这不仅使电机无法正常运行,而且可能导致电机的转子永磁体退磁.这一结果可以为改进永磁同步电动机的控制提供有力依据.  相似文献   

10.
基于神经网络的永磁同步电动机转矩脉动补偿   总被引:1,自引:0,他引:1  
永磁同步电动机的转矩波动补偿多采用转矩估计方法,但在不同电机运行点和电机参数不断变化的情况下,准确估计瞬时转矩非常困难.因此提出了采用径向基函数神经网络作为转矩波动补偿器的永磁同步电动机伺服控制方法.利用神经网络在线逼近非线性因素和外部干扰,对转矩波动进行补偿,然后根据反步控制方法得到神经网络权值调整规则和控制器输出.采用数字信号处理(DSP)进行了实验研究,结合神经网络和Backstepping的优点实现永磁同步电动机的转矩波动补偿.仿真和实验结果证明,采用上述方法可以实现不同转矩脉动的补偿。  相似文献   

11.
推断了永磁同步电机的数学模型,给出其基本方程、等效电路和相量图,在此基础上推断出了其功率和转矩的表达式,并给出功角和矩角特性.最后在MATLAB/sIMuLINK中对永磁同步电机进行了建模与仿真.  相似文献   

12.
根据永磁同步电机的数学模型,求解了不同工况下永磁同步电机进入主动短路时的电流和转矩输出情况,揭示了主动短路电机输出与电机参数之间的数学关系,并通过仿真和实验进行了验证.从理论角度分析了主动短路作为安全关断方法的优缺点,提出了永磁同步电机主动短路状态下的电流计算公式,为电机控制器选择合适的功率器件提供了依据.  相似文献   

13.
针对SR电机对轮毂驱动电动汽车行驶平顺性的影响,本文首先建立了开关磁阻(SR)电机的转矩波动方程,并根据电机的矢量控制原理,利用Sim Power System Toolbox模块库,搭建了电机模型;然后利用Matlab/Simulink软件,搭建了基于电机模型的机-电耦合振动仿真模型,并进行受轮毂电机转矩波动干扰的车辆垂向动力学模拟仿真。研究结果表明:附加轮毂电机后,车身振动和车轮动载荷都会变大;说明此类汽车工程化应用之前,需要优化悬架,以适应轮毂电机的转矩波动。  相似文献   

14.
阐述了一种新的无刷直流电机转矩检测方法,可应用于直接转矩控制。传统的转矩观测方法有基于磁链观测转矩和基于反电势观测转矩,其分别存在计算复杂、误差大和难以得到准确的反电势的问题。根据无刷直流电机运行特性,提出了通过采集端电压和相电流的卡尔曼滤波转矩观测策略,仿真结果表明,能够准确观测到电机转矩。通过设计卡尔曼滤波算法,有效避免了微分运算产生干扰的问题,且不需要额外的滤波电路,节约了系统成本,并且利用转矩观测时产生的中间变量,完成无刷直流电机无位置传感器控制。  相似文献   

15.
齿槽转矩是引起永磁步进电机振动、噪声甚至影响其安全运行的主要因素.在描述该种电机结构的基础上,研究了供电方式对电磁转矩的影响,分析了削弱永磁步进电机齿槽转矩的不同设计措施,给出了其齿槽转矩的数学表述.以一台永磁步进电机样机为例,用有限元法计算了几种不同设计措施对电机齿槽转矩的影响,并进行了对比研究,从而为该种电机的设计提供了可以借鉴的理论依据.图8,表1,参8.  相似文献   

16.
针对基于直接转矩控制的异步电动机运行时存在较大的电流及转矩脉动问题,提出一种用新型逆变器减小转矩和电流脉动的方法,在原有普通逆变器的基础上增加一个Boost电路,使逆变器有三种不同的输出电压,形成十二电压矢量,定子磁链轨迹更接近圆形。仿真结果表明:改进后系统使逆变器开关频率减小,损耗降低,转矩有明显的改善。  相似文献   

17.
王桔 《长春大学学报》2013,(12):1538-1540
设计了一种旋转式倒立摆,系统的工作原理是角度、位移信号经过检测电路获取后,由微分电路获取相应的微分信号,并转化为电压信号提供给驱动电路,以驱动直流力矩电机的运动,通过电机带动旋臂的转动来控制摆杆的运动。本设计结构新颖,它省去了现有直线式倒立摆中复杂的传动机构,使得整体结构简洁紧凑、占地面积小,而且使得与控制方法无关的因素(例如传动机构的故障、误差、非线性等)大大减少,从而增加了控制的精确度、控制效果稳定,使可靠性提高。  相似文献   

18.
高起动性能感应电动机的研究   总被引:1,自引:0,他引:1  
高起动性能感应电动机是一种起动转矩大、起动电流小的新型电机,该电机具有与普通电机完全不同的绕组结构.主要介绍这种电动机的基本原理,给出了一种绕组设计方案,研究出了电机的等效电路图并给出了电机的数学模型.  相似文献   

19.
行波型超声波电机定子环的运动研究   总被引:2,自引:0,他引:2  
基于功能转换及守恒原理和行波型超声波电机的结构,分析和推导出行波型超声波电机定子环的振动方程、定子环的波动速度、定子环对转子环的推动力、定子环的合成转矩及损耗等,建立了行波型超声波电机定子环的等效电路,如再对转子环进行分析与研究,则为解决行波型超声波电机的数学模型提供了理论依据.图2,参10.  相似文献   

20.
摘要:无刷直流电机(BLDCM)是一种多变量、强耦合、非线性、时变的复杂控制系统,采用传统的PID控制很难实现无静差控制。本文针对无刷直流电机(BLDCM)提出了一种基于PID模型的转速控制方案,利用无刷直流电机的电压与转矩转速方程,通过调节PID参数来实现转速控制,采用模糊原理对PID参数进行模糊化,根据电机参数的变化,对PID参数进行在线调整,取得了高精度的转速控制。仿真和实验结果表明,采用本文提出的模糊PID控制方法控制无刷直流电机,能够实现响应速度快、无超调、控制精度高,且系统对干扰和参数变化具有较强的鲁棒性,动、静态性能均优于传统的PID控制和单纯的模糊控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号