首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以传统的Ziegler-Natta(Z-N)/茂金属(Cp2ZrCl2)催化剂为主催化剂,以三乙基铝[(C2H53Al]为助催化剂,采用本体聚合法合成了具有超高分子量的烯烃类聚合物.采用正交试验的方法获得了最佳的催化剂配比条件(A为0.02 g、B为0.03 g、C为0.15 mL).凝胶渗透色谱测得在该条件下所合成聚合物的Mw为1.12×107,Mn为2.96×106,多分散系数Mw/Mn为3.79.以旋转粘度计测得该条件下聚合物溶液的表观粘度为27 mPa·s.实验证明,通过采Ziegler-Natta(Z-N)/茂金属(Cp2ZrCl2)为主催化剂进行烯烃聚合不仅能提高聚合物的分子量,而且还能增大其分子量分布.  相似文献   

2.
阐述了近些年来茂金属烯烃活性聚合催化剂的研究进展及其应用.讨论了它们的合成、结构及其对催化烯烃聚合活性的影响,考察了不同种类的配体对催化烯烃聚合活性、聚合物结构和分子量大小的影响.研究表明:茂类金属化合物制备方便,反应条件温和,在催化烯烃聚合中表现出了较高的催化活性.  相似文献   

3.
新一代第4族茂金属配合物的发展对聚合催化剂的改进产生了深远的影响.茂金属催化体系不仅有高的催化活性,而且可以合成具有靶向特性(如分子量,分子量分布和立体化学)的聚合物[1].第4族控制几何构型催化剂(CGC)是单中心聚合催化剂,在特定条件下可通过乙烯终止及在相邻催化活性中心的再插入链转移反应键入聚合物链合成接枝聚乙烯[2],生成的含少量接枝链的聚乙烯具有优异的材料特性.近年来,大量研究[3~7]表明桥型双核茂金属聚合催化剂不仅具有单核茂金属聚合催化剂的优异性质,而且可由桥配体调节聚合特性.  相似文献   

4.
阐述了近些年来非茂金属烯烃活性聚合催化剂的研究进展及其应用.讨论了它们的合成、结构及其对催化烯烃聚合活性的影响,考察了不同杂原子和取代基对催化烯烃聚合活性、聚合物结构和分子量大小的影响.研究表明:非茂类金属化合物制备方便,反应条件温和,在催化烯烃聚合中表现出了较高的催化活性.  相似文献   

5.
通过高温凝胶渗透色谱对茂金属催化合成的一系列乙烯均聚物进行了分析,可以看出Al/Ti比从1 000变到4 000时,分子量分布曲线图变化不大,而从4 000变到7 000时,变化相当大,分布宽度从2.48增至2.81;催化剂D的活性最小,可作为非对称性茂系金属催化剂;该聚合体系分子量的大小受聚合温度的影响很明显,随温度的升高,分子量分布曲线图向左发生很大位移,在聚合温度为70℃时存在两个活性相当的活性中心.  相似文献   

6.
反相微小乳液合成速溶高分子量聚丙烯酸钠   总被引:1,自引:0,他引:1  
以聚异丁烯丁二酰亚胺、十二烷基硫酸钠为乳化剂,采用反相微小乳液法合成了速溶高分子量聚丙烯酸钠.研究了乳化剂和pH值对聚合体系稳定性的影响以及(NH4)2S2O8—甲基丙烯酸—N、N—二甲氨基乙酯(DMAEMA)—NaHSO3引发剂、单体浓度、烯丙醇对聚合物性能的影响.结果表明,最佳的实验条件:pH值等于10;乳化剂用量为5%(油相);引发剂浓度分别为0.06%、0.04%、0.02%(W单体);烯丙醇的浓度为0.08%(W单体);单体浓度为40%(水相).在最佳实验条件下,合成聚合物分子量超过2×107,且溶解性能优于溶液聚合和反相悬浮聚合所得产品.  相似文献   

7.
采用含少量溶剂的水溶液聚合法合成了超低分子量聚丙烯酰胺.以乙醇为移热溶剂,甲酸钠为链转移剂,过硫酸铵为引发剂,探讨了溶剂、链转移剂、引发剂浓度对聚合物分子量的影响.在单体质量分数为40%,链转移剂浓度为0.12~1.47 mol/L,溶剂浓度为0.87~4.35 mol/L,引发剂浓度为(3.5~17.5)×10-3 mol/L的实验条件下,所获得的聚丙烯酰胺分子量范围为(1.1~8.0)×104.  相似文献   

8.
合成了5-位含偶氮苯功能基团的降冰片烯衍生物,并以双-(β-酮萘胺)镍(II)为主催化剂,三五氟苯硼(B(C6F5)3)为助催化剂,在甲苯中对该单体进行了加成均聚合与共聚合研究;采用FT-IR、1H NMR、13C NMR、UV-Vis、GPC、TGA对合成单体及聚合产物进行了表征。结果表明,合成单体及聚合产物均在300-400nm范围具有较强的光学吸收;共聚物的分子量在4.78×104 g/mol到5.15×104 g/mol之间,均聚物的分子量在6.5×105 g/mol到1.28×106 g/mol之间;聚合产物的热稳定性可达到320 °C以上,且在普通有机溶剂中具有良好的溶解性。  相似文献   

9.
为研究以合成聚酮高分子寻找高效廉价的催化体系,制备了5%的活性碳负载钯多相催化剂,并首次将其用于催化苯乙烯与CO共聚合成聚酮(PK)的反应中.采用红外光谱、元素分析、13CNM R和热重分析等手段对苯乙烯/CO共聚产物的结构和性质进行了表征.分别讨论了在钯碳催化剂作用下,含氮配体以及助催化剂强酸等因素对共聚反应的影响,并评价了钯碳催化剂在苯乙烯与CO共聚反应中的循环使用效果.实验结果表明,在温度为65℃,CO压力为3.0M Pa的条件下,当使用2,2′-联吡啶为配体,三氟甲基磺酸为助催化剂时,钯碳催化苯乙烯与CO共聚反应的活性可达4.65×103g PK/(m o lPd.h),共聚产物的重均分子量(Mw)可达9.32×103g/m o l,数均分子量(M n)可达5.23×103g/m o l.  相似文献   

10.
以含结合水的钯二亚胺 [(ArN=C(An)—C(An)=NAr)Pd(CH2)3C(O)OMe] (BAr’4)·H2O为催化剂,以水为分散介质,进行了1-辛烯均聚合及1-辛烯与丙烯酸甲酯(MA)的共聚合反应,通过GPC、DSC、1H-NMR、光散射测定了聚合物的分子量、熔点、分子结构以及聚合物粒子的粒径。结果表明:该催化剂在水相聚合体系中可以催化1-辛烯的均聚合及1-辛烯与MA的共聚合反应;得到的聚合物重均分子量均可达3.3×104以上,且分子量分布较窄(Mw/Mn在1.4~2.1之间);共聚物为半结晶性聚合物,Tg为-34.8℃,Tm为32.3℃,聚合所得均聚物和共聚物的支化度均较高;共聚合可得到较为稳定的乳液体系,光散射测得乳胶粒子的粒径约为266nm。  相似文献   

11.
先用酯化的方法合成了含有聚乙二醇(PEG)的降冰片烯大分子单体, 再用开环易位聚合方法使大分子单体聚合, 得到了PEG取代的聚降冰片烯接枝共聚物. 并通过凝胶渗透色谱法(GPC)研究合成的接枝共聚物分子量及分子量分布情况. 结果表明: 聚合物的数均分子量为1.0万~4.4万; 分子量分布为1.11~1.22, 并且聚合物的分子量分布随[M]/[I]的增加而变窄.  相似文献   

12.
甲基丙烯酸甲酯/ 丙烯酸丁酯无皂水性涂料的研究   总被引:2,自引:0,他引:2  
合成了一种丙烯酸酯无皂共聚物 ,用GPC法测得数均相对分子质量 Mn=2× 10 4 ,重均相对分子质量 Mw=4 5× 10 4 ,分散性 2 2 5 .用DSC法测得Tg=2 7 4℃ .FTIR分析了共聚物的组成 .通过扫描电镜观察到 ,共聚物在微观上呈球状粒子形状 ,粒子直径为 175nm .讨论了表面活性单体对乳液的影响 .涂料清漆具有良好的性能 .  相似文献   

13.
首先将稀土元素镧与D-苯丙氨酸,水杨酸,甲基丙烯酸甲酯(MMA)进行配位形成镧配合物,以镧配合物为单体,加入引发剂偶氮二异丁腈(AIBN)引发单体聚合合成了La-PMMA-水杨酸-D-苯丙氨酸手性聚合物,并通过红外光谱(FT-IR),核磁共振(HNMR),扫描电镜(SEM)和凝胶渗透色谱(GPC)等对产物进行了测试与分析.结果表明:已成功制备了La-PMMA-水杨酸-D-苯丙氨酸手性聚合物;聚合物粒子呈球状,平均粒径约为1μm;手性聚合物的Mw为8 240,分子量分布较窄.  相似文献   

14.
采用改性Ziegler-Natta(Z-N)催化体系(n-BuO)TiCl3/MgCl2/AlEt3催化乙烯/1-辛烯共聚合。考察了聚合温度、Al/Ti物质的量比、单体投料比及乙烯压力对聚合行为的影响,并与传统Z-N催化体系TiCl4/MgCl2/AlEt3催化乙烯/1-辛烯共聚合行为进行了对比研究。采用GPC,DSC,13C-NMR,SEM对共聚物的结构、形态及性能进行了表征。结果表明,改性Z-N催化体系催化乙烯/1-辛烯共聚合时,1-辛烯的共聚能力明显高于传统Z-N催化体系,在共聚物中1-辛烯的插入量达2.26%(摩尔分数),而传统Z-N催化剂1-辛烯的插入量仅为0.34%(摩尔分数);Al/Ti物质的量比及单体投料比对催化剂的活性、1-辛烯的插入量、共聚物的分子量与分子量分布及共聚物的微观结构有明显的影响;根据13C-NMR结果计算了单体的竞聚率:rE=55.00,rO=0.023,其乘积rE· rO=1.27,表明该聚合物为无规共聚物。  相似文献   

15.
微生物胞外多糖PS-9415的分子结构   总被引:2,自引:0,他引:2  
研究了放射形土壤杆菌 (Agrobacteriumradiobacter)Q94 15胞外多糖PS_94 15的分子结构 .PS_94 15是由D -葡萄糖、D -半乳糖组成的中性杂多糖 ,其摩尔比为 0 .83∶1,含有乙酰基和丙酮酰基 .其重均分子量 Mw=2 0 .7× 10 4 u ,数均分子量 Mn=18.2× 10 4 u( Mw/ Mn=1.14 ) .PS_94 15为典型的热敏胶 ,其θm=90℃ .PS_94 15溶液在温度变化时有构象转变 ,凝胶为无定型网络结构 .  相似文献   

16.
介绍了一种用于缺电子类烯烃自由基聚合的引发体系,此引发体系使用H2O2和FeCl3两种经济、环保的原料,实现了丙烯酸、甲基丙烯酸等水溶性单体在水中的自由基聚合,同时实现了丙烯腈在水中的连续水相沉淀聚合及在DMSO、DMF中的自由基聚合.结果表明,该引发体系在较低的引发剂浓度和较低的反应温度(30~60℃)下,合成的聚丙烯酸钠分子量在1.0×106~2.0×106之间,聚甲基丙烯酸钠分子量在1.0×105~1.7×105之间,且均具有较低的分子量分布(Mw/Mn=1.1~1.4)和较好的转化率(90%);合成的聚丙烯腈分子量在2.0×104~8.0×104之间,转化率最高可达94.1%.  相似文献   

17.
合成了一系列含有烯丙基和芳基的茂金属络合物,通过核磁共振氢谱(~1H-NMR)、核磁共振碳谱(~(13)C-NMR)、质谱(MS)和元素分析(EA)表征,确认了其化学组成,在甲基铝氧烷(MAO)助催化下,这些茂金属络合物有效催化乙烯聚合以及乙烯与1-己烯共聚,在50℃、1.0 MPa时,催化活性最高达到520 kg/(mol·h)。研究结果表明,烯丙基的引入稳定了催化活性中心,使得聚合反应能够在较高温度下进行,芳基的引入提高了该类络合物的共聚能力。同时还研究了聚合温度、助催化剂比例等因素对聚合反应的影响,结果表明,随着聚合温度升高催化活性先升高后降低,80℃时活性最高,为352 kg/(mol·h);含有双官能团的茂金属催化活性随着助催化剂比例升高而升高,聚合物分子量随着助催化剂比例升高而降低;1-己烯插入率最高可达4.30%,这表明双官能化茂金属有效提高了双配体茂金属共聚能力。  相似文献   

18.
苯乙烯的原子转移悬浮聚合研究   总被引:2,自引:2,他引:0  
用氯化苄为引发剂 ,氯化亚铜为催化剂 ,2 ,2′-联吡啶为配体 ,采用开放体系 ,外加搅拌 ,氮气保护下 ,初步研究了苯乙烯在 95℃ ,水为分散相的原子转移悬浮聚合 .结果表明转化率随反应时间变化平稳 ,分子量随转化率基本呈线性增加 ,分子量分布随转化率变窄 ,且分布比一般的自由基聚合窄 (分布指数可达 1 .63 ) .动力学研究表明聚合反应对单体浓度为一级动力学关系 ,经计算 ,聚合体系的活性自由基浓度为 1 .1 8× 1 0 - 8mol/L.为了进一步验证原子转移悬浮聚合的可控性 ,还进行了相同温度下的苯乙烯悬浮热聚合 ,结果与相同时间的原子转移悬浮聚合相比 ,转化率高 (分别为 3 8.5 %和 2 8.1 % ) ,分子量大 (分别为 7764 2和 45 670 ) ,分子量分布宽 (分别为3 .0 2和 1 .67) ,进一步说明了在原子转移催化剂存在下的苯乙烯悬浮聚合具有一定程度的可控性 .  相似文献   

19.
以过硫酸钾(K2S2O8)/硫代硫酸钠(Na2S2O3)氧化还原体系为引发剂,以三乙醇胺(TEA)为添加剂,在氧气存在条件下,进行了N-异丙基丙烯酰胺(NIPAM)的水相可逆加成-断裂-链转移自由基聚合(RAFT聚合).实验结果表明,聚合物分子量随转化率线性增长,分子量分布窄(Mw/Mn≤1.10),ln([M]0/[M])对时间成线性关系,符合一级动力学特征.扩链聚合反应表明,聚合物的分子量随之会继续线性增大.在25-35℃范围内,聚合速率随温度的升高而增加.研究结果表明,聚合反应呈现活性特征,而且在室温和有氧条件下能以较快的反应速度进行.  相似文献   

20.
本文采用特性粘数[η],重均分子量Mw和GPC,以宽分布的高聚物试样得到单分散的粘度—分子量关系式的方法,建立了由聚已二酸丁二醇酯(Mn=1750),4,4′—二苯基甲烷二异氰酸酯(MDI)和扩链剂1,4—丁二醇(BDO)形成的低硬含量聚氨酯在25℃时五种溶剂中的单分散Mark—Houwink关系式: DMF[η]=1.540×10~(-2) Mw0.748 THF[η]=1.211×10~(-2)Mw0.783 二氧六环:[η]=7.623×10~(-3)Mw0.820 环已酮[η]=1.157×10~(-2)Ww0.785 DMSO[η]=4.550×10~(-2)MW0.647 按照上述式子计算得到的Mη与单分散的Mark—Houwink关系式相吻合,而与试样的分布宽度无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号