首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
对CuCr合金粉末固溶时效处理之后进行预烧结,得到CuCr预压块。以此预压块为基底,采用化学气相沉积(chemical vapor deposition, CVD)工艺和放电等离子烧结(sparking plasma sintering, SPS)工艺成功制备了三维互通的碳纳米管/铜(carbon nanotubes/Cu, CNTs/Cu)复合材料。采用扫描电子显微镜(scanning electron microscope, SEM),拉曼光谱仪等表征碳纳米管的微观组织结构,利用微拉伸试验机测试复合材料的力学性能。研究结果表明,Cr作为催化剂,对碳纳米管的形貌影响很大,碳纳米管的质量也会对复合材料的力学性能产生影响。当Cr的质量分数为0.6%时,碳纳米管在铜基体表面均匀分布,CNTs/Cu复合材料的力学性能最佳。经SPS烧结和轧制之后,复合材料的导电率和屈服强度分别达到了82.4% IACS和349 MPa,断裂伸长率高达6.4%,这是由于CNTs的加入,起到了第二相强化的作用,提高了复合材料的力学性能。  相似文献   

2.
放电等离子烧结(SPS)工艺可以实现快速烧结成型,且制备出的复合材料致密度高、硬度高、导电和导热性能好、晶粒尺寸均匀.在采用化学气相沉积(CVD)法原位合成分布均匀的CuCr/CNTs复合粉末的基础上,运用不同的SPS工艺制备CuCr/CNTs复合材料.利用扫描电子显微镜、偏光显微镜、数字金属导电率测试仪、微拉伸试验机、显微硬度计等对其组织性能进行表征.结果表明,当烧结温度为750 ℃,烧结压力为45 MPa,烧结时间为10 min,升温速率为80 ℃/min时,制备的CuCr/CNTs复合材料的组织和性能较佳,导电率、硬度和抗拉强度分别为86.8%IACS、95.8(HV)、178 MPa.  相似文献   

3.
由于具有质量轻、大长径比以及优异的力学性能和独特的导电性能等特点,碳纳米管(carbon nanotubes,简称CNTs)被认为是优异的纳米增强体.制备高性能CNTs/聚合物复合材料显著依赖于CNTs与聚合物基体之间的界面结合、CNTs在基体中的分散性和复合材料制备方法等.笔者首先概述了CNTs/橡胶纳米复合材料的制备方法,讨论了CNTs改善复合材料的界面效果及工作原理,其次分析了CNTs增强橡胶纳米复合材料力学和电学性能的机理,最后展望CNTs增强复合材料力学和电学性能的新途径.  相似文献   

4.
以元素单质粉Ti,Al,C,Cu为原料,采用机械合金化和放电等离子烧结(SPS),成功制备了Cu/Ti3AlC2复合材料块体,并对其进行了组织性能分析.实验结果表明:采用SPS烧结技术制备的Cu/Ti3AIC2复合材料,随着Ti3AIC2含量的增加,其显微硬度逐渐提高,相同烧结工艺条件下(900℃烧结,保温20 rain)添加15vol%Ti3AlC2复合材料的硬度比纯Cu提高近2倍;添加适量的Ti3AlC2可显著提高复合材料的耐磨性,当复合材料中含5vol%Ti3AlC2时,磨损量降低30%以上.  相似文献   

5.
以元素单质粉Ti,Al,C,Cu为原料,采用机械合金化和放电等离子烧结(SPS),成功制备了Cu/Ti3AlC2复合材料块体,并对其进行了组织性能分析。实验结果表明:采用SPS烧结技术制备的Cu/Ti3AlC2复合材料,随着Ti3AlC2含量的增加,其显微硬度逐渐提高,相同烧结工艺条件下(900℃烧结,保温20min)添加15vol%Ti3AlC2复合材料的硬度比纯Cu提高近2倍;添加适量的Ti3AlC2可显著提高复合材料的耐磨性,当复合材料中含5vol%Ti3AlC2时,磨损量降低30%以上。  相似文献   

6.
通过放电等离子体烧结(SPS),分别以纳米多晶粉体和非晶粉体作为原料制备了Al2O3-ZrO2纳米陶瓷复合材料,并研究了初始粉体状态对致密化过程和微观结构的影响。将纳米多晶粉体通过SPS烧结为致密的纳米块体,所需的最低烧结温度为1 400℃,所得产品的晶粒尺寸约为320nm;非晶粉体完全致密所需的SPS温度为1 200℃,所得产品的晶粒尺寸约为150nm。相比于纳米多晶粉体,非晶粉体可以在较低的温度下烧结成为致密纳米块体,我们将这一现象归结为非晶粉体在烧结中的相转变。这一发现为纳米陶瓷块体的低温烧结提供了新的思路。  相似文献   

7.
利用TEM研究了通过放电等离子烧结(Spark Plasma Sintering,SPS)方法制备的AlMnCe/Al2O3微胞结构金属/陶瓷纳米复合材料界面的微观结构。结果表明,Al2O3纳米粉末在放电局域高温作用下形成了胞壁烧结体相,纳米Al2O3胞壁层与AlMnCe胞体合金之间有70 nm的熔渗过渡区,界面结合良好。纳米Al2O3胞壁层的烧结暗示SPS烧结条件下的温度分布具有明显的微观局域性差异,界面处有放电引起的短时高温经历。  相似文献   

8.
采用低成本、大规模的类粉末注射成形技术制备碳纳米管(CNTs)/铜基复合材料,研究了脱脂及烧结工艺、轧制温度及轧制道次以及CNTs含量对复合材料结构和性能的影响.结果表明,借助聚合物粘结剂能实现CNTs与铜粉的均匀混合,适当量的CNTs的加入对基体有明显的增强效果,含量为1%时得到的复合材料各项性能最好.对烧结后的样品进行热轧制处理,不但能够使铜基体的显微组织发生明显变化,产生显著的加工硬化效果,而且在大变形作用下,CNTs的分散也会变得更加均匀,从而明显提高复合材料的致密度和显微硬度.  相似文献   

9.
为了赋予碳纳米管(CNTs)表面良好的生物性能,拓展CNTs在硬组织生物材料及组织工程支架材料中的应用,采用化学共沉淀和水热后处理法宏量制备了羟基磷灰石(HA)/多壁碳纳米管(MWCNTs)复合材料,通过调节制备过程中浓硝酸纯化的MWCNTs加入量,考察不同MWCNTs含量的HA/MWCNTs复合材料的结合形式.扫描电子显微镜(SEM)和透射电镜(TEM)表征结果表明,当ω(MWCNTs)=15%时,MWCNTs表面均匀地包覆了一层由纳米HA晶粒紧密相连的膜层,在此情况下MWCNTs与纳米HA形成最佳结合状态.体外细胞培养实验表明,制备的HA/MWCNTs复合材料具有良好的生物相容性.  相似文献   

10.
AlN和Al2O3纳米颗粒增强铜基复合材料   总被引:4,自引:0,他引:4  
用粉末冶金法制备了Cu/AlN和Cu/Al2O3两种复合材料,研究了两种纳米颗粒含量对复合材料性能的影响和复合材料的软化温度,并探讨了相关机理,比较了AlN和Al2O3纳米颗粒的增强效果.结果表明,在烧结过程中,弥散分布在铜基体中的AlN和Al2O3纳米颗粒细化了晶粒;随着复合材料中AlN和Al2O3质量分数的增加,材料的密度和导电性都呈下降趋势,而硬度出现极大值;两种复合材料的软化温度均达到700℃,远远高于纯铜的软化温度(150℃),从而提高了材料的热稳定性;综合各种因素考虑,AlN纳米颗粒对铜基体的增强效果要优于Al2O3纳米颗粒.  相似文献   

11.
TiO2只能吸收利用太阳光谱中的紫外光部分,且光生电子和空穴复合很快,从而影响TiO2的光催化效率。为了提高TiO2的光催化能力,研究者致力于TiO2的掺杂修饰,本文引入了碳纳米管(CNTs)和金属银纳米粒子,旨在提高TiO2的分散性,阻止光生电子和空穴的复合。首先通过溶剂热方法成功制备了单分散且大小均一的核壳结构Ag@TiO2纳米材料,随后采用浸渍法将酸化处理的CNTs引入Ag@TiO2核壳结构的体系中,制备了CNTs修饰的Ag@TiO2纳米复合材料(CNTs-Ag@TiO2)。紫外光降解的实验结果表明,该复合材料具备增强的TiO2光催化性能,在光催化分解水与光催化降解污染物方面具有很好的应用前景。  相似文献   

12.
用微波法制备了碳纳米管负载ZnCdS纳米复合材料(ZnCdS/CNTs).通过扫描电子显微镜(SEM),透射电镜(TEM)和X-射线粉末衍射(XRD)测试表明:平均粒径为25 nm六方纤锌矿结构的ZnCdS纳米粒子均匀分散在碳纳米管表面.ZnCdS/CNTs纳米复合材料在可见光下光催化降解甲基橙和罗丹明溶液.结果表明:催化剂用量为0.02g/L条件下,对初始浓度均为100mg/L的甲基橙和罗丹明溶液进行可见光光照50min后,降解率分别达到97%和96.7%;催化剂重复使用3次后,光照50min后甲基橙和罗丹明的降解率仍可达到92%和91%.  相似文献   

13.
微纳米级粘土/ 橡胶复合材料   总被引:13,自引:0,他引:13  
对粘土在橡胶中的应用进行了一次比较全面的回顾, 总结了近年来粘土在橡胶中应用的新进展。文中分别以粘土/ 橡胶微米复合材料和粘土/ 橡胶纳米复合材料为主题进行了讨论。首先概述了陶土微米粒子表面改性的几种技术方法, 介绍了微米粒子进一步精细化措施, 评述了红粘土/ 天然橡胶母胶的性能优劣。然后综述了现有的粘土/ 橡胶纳米复合材料制备的方法, 对其进行了归类, 从技术难度和分散效果等方面进行了比较, 并提出了一些潜在的制备方法。其中, 作者认为工业化最可许的方法是粘土水分散体/ 橡胶乳液互穿纳米复合技术。最后,作者总结了粘土/ 橡胶纳米复合材料的一些特性: 高补强性、优异的阻隔性和良好的浅色及透明性。基于此, 对粘土/ 橡胶纳米复合材料在橡胶工业中的应用提出了一些设想和展望。  相似文献   

14.
以4,4′-二氨基二苯基甲烷(DDM)为固化剂,通过插层法制备了环氧树脂/有机蒙脱土纳米复合材料。根据样品在丙酮中的溶胀度,确定了纳米复合材料的最佳制备条件,在此条件下,制备了一系列蒙脱土含量不同的纳米复合材料。用X射线衍射(XRD)表征了蒙脱土在基体中的分散状态,测定了纳米复合材料的氧气透过系数,并研究了纳米复合材料的动态力学性能。结果表明:当蒙脱土的含量较低时,可以形成剥离型纳米复合材料;环氧树脂与蒙脱土复合后,阻隔性能大幅提高;蒙脱土的加入使纳米复合材料的储能模量和玻璃化转变温度明显提高。  相似文献   

15.
CeO2/CNTs纳米复合粒子的制备及其催化性能   总被引:1,自引:0,他引:1  
 采用液相化学沉积法制备CeO2/CNTs纳米复合粒子,考查了表面活性剂对产物形貌的影响,采用TEM、XRD、FT-IR等手段对产物的形貌和晶相结构进行表征。结果表明,在一定条件下,表面活性剂的“桥接”作用有效地改善了活性组分的负载,以十二烷基苯磺酸钠为表面活性剂,以自制碳纳米管(CNTs)为载体,可以制备出负载均匀的CeO2/CNTs纳米复合粒子。探讨了活性组分CeO2在CNTs表面的负载机制,并在此基础上研究了所得样品在风化煤硝酸氧解制备腐植酸中的催化性能。催化结果表明,CeO2/CNTs纳米复合粒子的催化性能明显优于单纯的CeO2和CNTs的催化性能,能显著提高腐植酸的产率。  相似文献   

16.
采用水热的方法,将纳米SnO2负载在多壁碳纳米管(CNTs)表面,制备得到SnO2负载多壁碳纳米管复合材料(SnO2/CNTs)。通过X射线衍射(XRD)和扫描电子显微镜(SEM)研究了不同反应条件对产物形貌的影响。结果表明,通过改变溶液的浓度可以控制SnO2/CNTs纳米复合材料的形貌。  相似文献   

17.
对Al的质量分数分别为0.20%,0.35%,0.60%的Cu-Al合金粉末进行内氧化,得到Cu-Al2O3粉末。采用化学气相沉积法在Cu-Al2O3粉末表面原位生长碳纳米管(carbon nano tubes, CNTs),采用放电等离子烧结工艺成功制备了CNTs/Cu-Al2O3复合材料。采用扫描电子显微镜和透射电子显微镜观察了CNTs/Cu-Al2O3复合粉末、复合材料断口的形貌。采用显微硬度计、微拉伸试验机、摩擦磨损试验机分别对纯Cu及复合材料的维氏硬度、抗拉强度、摩擦因数进行测试。采用电化学工作站测试复合材料在3.5%NaCl (质量分数)水溶液中的耐腐蚀性能。结果表明,随着Al的质量分数的增加,粉末表面合成的CNTs的数量也增多。Al的质量分数为0.35%时,CNTs/Cu-Al2O3复合材料的综合性能最佳,与纯Cu相比,复合材料的抗拉强度和腐蚀电势分别提高了86.4%和43.2%,分别为315 MPa和-0.268 V,摩擦因数降低了53.3%,仅为0.28。  相似文献   

18.
通过溶液共混制备了不同碳纳米管(CNTs)质量分数的CNTs/聚苯乙烯(PS)、CNTs/聚醚酯(PEE)复合材料,研究CNTs对复合材料导电性能、力学性能的影响.CNTs的加入可以使复合材料的导电性能得到明显提高,CNTs/PS体系的电导率大于CNTs/PEE体系的电导率.随着CNTs质量分数的增加,CNTs/PS复合材料的断裂强度先增大后减小,在CNTs质量分数为1%时达到最大值,但CNTs/PEE的断裂强度随CNTs质量分数的增加逐渐下降,扫描电镜(SEM)结果显示CNTs在PS中的分散性稍好于在PEE中的分散性.  相似文献   

19.
采用溶胶-凝胶法,以钛酸四丁酯为前驱体,制备了不同质量比的纳米二氧化钛/碳纳米管(TiO2/CNTs)复合粉体材料.扫描电镜和X射线衍射的测试结果表明,CNTs可以有效地抑制TiO2溶胶分子水解过程中的团聚现象,并且锐钛矿型纳米TiO2粒子可以均匀地分散在CNTs的表面;紫外一可见光漫反射吸收光谱测试结果表明,当TiO2与CNTs的质量比为5:1时,CNTs可以明显增强TiO2的吸光强度.对利用此复合粉体材料做成的ITO膜电极进行了电化学测试,CV测试表明,CNTs的引入明显减弱了TiO3在0.25 mol/LH2SO4中的氧化还原峰电流;电化学阻抗谱测试说明,与单独机械混合的情况不同,对复合ITO膜电极而言,在高频区只呈现出一个半圆,且随CNTs含量的增加,TiO2的电化学反应电阻明显增大.  相似文献   

20.
借助分子级混合法和均质机剥离共同作用,采用放电等离子体烧结技术(SPS)制备出还原氧化石墨烯/铜基复合材料。利用SEM、XRD、Roman、XPS和压缩测试对其微观组织结构及综合性能进行了研究。结果表明,适量的氧化石墨烯能够均匀分散在铜基中并显著提高复合材料的综合性能。复合材料的压缩屈服强度最高达到481 MPa,比纯铜相应值提升了约2.2倍,维氏硬度较纯铜相应值也提升了约0.7倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号