首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
灰绿曲霉高产纤维素酶突变株的选育   总被引:5,自引:0,他引:5  
以一株具有较高纤维素酶活性的野生菌株-灰绿曲霉XC9为出发菌株,经过紫外线、氯化锂、甲基磺酸乙酯(EMS)等物理化学诱变剂多重诱变处理,获得了抗葡萄糖阻遏的突变株E2-26、E5-65、U6-31和EU7-22,其CMC酶活与出发菌株相比分别提高至1.7、1.4、1.3、2.0倍.突变株经PDA斜面接种传代5次后产酶性能仍然保持稳定.变株的菌丝、孢子颜色也发生了较大的改变.对突变株EU7-22的形态结构进行了观察,并与出发菌株XC9作了发酵性状的比较,发现其产酶性能有了明显提高.  相似文献   

2.
灰绿曲霉高产纤维素酶突变株的选育   总被引:5,自引:1,他引:5  
以一株具有较高纤维素酶活性的野生菌株-灰绿曲霉XC9为出发菌株,经过紫外线﹑氯化锂﹑甲基磺酸乙酯(EMS)等物理化学诱变剂多重诱变处理,获得了抗葡萄糖阻遏的突变株E2-26﹑E5-65﹑U6-31和EU7-22,其CMC酶活与出发菌株相比分别提高至1.7、1.4、1.3、2.0倍.突变株经PDA斜面接种传代5次后产酶性能仍然保持稳定.变株的菌丝、孢子颜色也发生了较大的改变.对突变株EU7-22的形态结构进行了观察,并与出发菌株XC9作了发酵性状的比较,发现其产酶性能有了明显提高.  相似文献   

3.
里氏木霉纤维素酶系的分离及其酶学性质   总被引:1,自引:0,他引:1  
采用两级超滤、DEAE-Sepharose FF阴离子交换层析、CM-Sepharose FF阳离子交换层析和Sephadex G-100凝胶渗透层析等分级纯化步骤,从里氏木霉纤维素酶系中分离纯化得到电泳纯的3个内切葡聚糖酶组分EGⅠ、EGⅡ和EGⅢ,2个外切葡聚糖酶组分CBHⅠ和CBHⅡ和1个β-葡萄糖苷酶组分,它们对各自底物的比活力分别为176.35、153.96、64.22、16.86、4.82、31.00 IU/mg,米氏常数分别为6.70、8.46、13.22、1.37、3.46、2.20 mg/mL.同一类酶组分的米氏常数Km越大,转换数Kcat越小.分离纯化所得EGⅠ、EGⅡ、EGⅢ、CBHⅠ、CBHⅡ和GB等酶组分的分子量分别为50、46、25、65、58、75 kDa.  相似文献   

4.
宇佐美曲霉Y—26纤维素酶的纯化及酶学性质   总被引:13,自引:1,他引:12  
从宇佐美曲霉 (A .usamii)固态发酵物中提取纤维素酶。粗酶液经硫酸铵盐析除去大量杂蛋白 ,然后通过 2次SephadexG - 2 0 0柱层析纤维素酶中CMC酶 ,提纯倍数可达 5 72。酶学研究表明 ,纤维素酶中CMC酶最适作用温度为 6 0℃ ,最适作用pH为 4.0 ,30~ 6 0℃区间酶活力较稳定 ,在pH为 3 .0~ 5 .0范围内 ,5 0℃保温 30min ,能保持 90 %的酶活力。红外光谱分析表明 ,纤维素酶在O—H ,N—H ,C—H ,CO有吸收带。CMC酶的Km、vmax 值分别为 0 10 g/ml、0 40mg/(ml·min)。  相似文献   

5.
青霉T24-2(Penicillium sp.T24-2)和灰绿曲霉EU7-22(Aspergillus glaucus EU7-22)能利用甘蔗渣进行固态发酵产纤维素酶.通过对青霉和灰绿曲霉混合培养特性的研究,确定两个菌株不适合进行混合培养产纤维素酶.分别对两个菌株产纤维素酶的条件进行优化,单独用青霉曲酶时糖化率为31.4%,单独用灰绿曲霉曲酶时糖化率为34.1%.对其曲酶混合糖化进行研究,当两种曲酶以1:1比例进行混合糖化时,糖化率可达51.3%.以青霉T24-2和灰绿曲霉EU7-22的曲霉混合糖化的研究国内外还未见报道,研究结果大大提高了糖化率.  相似文献   

6.
将来源于匍枝根霉的endoglucanase Ⅱ(egⅡ)在毕赤酵母中实现异源表达,对构建完成的重组毕赤酵母进行高密度发酵,制备目标酶蛋白.发酵液经 Ni 柱分离纯化,得到分子量大小约为38 kDa,比酶活为37.8 IU/mg的蛋白.酶学性质研究表明:该酶最适反应温度为55℃,最适反应 pH 为4.8;Mn2+、Zn2+、Fe2+对egⅡ的酶活力有一定的激活作用,Cu2+对egⅡ酶活有抑制作用,Mg2+、Co2+、Na+和K+等离子对该酶的催化活力没有明显影响;该酶以CMC-Na为底物时其反应米氏常数为2.04 mg/ml.  相似文献   

7.
从造纸厂污泥中获得一株产高温纤维素酶的真菌XM5,经形态学和ITS序列分析,鉴定其为土曲霉(Aspergillus terreus). 在稻草液体发酵培养基中,土曲霉XM5所产纤维素酶的合成模式为同步合成型. 酶学性质研究表明,该纤维素酶的最适作用温度是65℃,在80℃下保温2h活力残留40%以上,最适作用pH为4.0,在pH4.0~7.0内较稳定,实验结果表明,该菌株所产纤维素酶具有较好的温度稳定性和pH稳定性.  相似文献   

8.
纤维素酶是自然界碳素循环中的一种关键酶,它可以将纤维素性材料,转化为可直接利用的葡萄糖,并可通过其它酶和酶系统的作用转化为乙醇及蛋白质。纤维素酶是多酶体系,包含外切葡聚糖酶、内切葡聚糖酶(Cx)及β-葡萄糖苷酶。其中内切葡聚糖酶含有若干种同工酶,能将可溶性纤维素转化为还原寡糖,是纤维素酶系中的重要组分,为了深入研究Cx酶的性质,本文对其中一种Cx酶进行了分离纯化,并对其基本性质进行了研究。 1实验部分  相似文献   

9.
葡聚糖凝胶层析法分离纯化纤维素酶的研究   总被引:4,自引:0,他引:4  
用绿色木霉(Trichodermaviride)高产变异菌株4131产生的纤维素酶粗酶分别过sephadexG25、sephadexG50、sephadexG75、sephadexG100和sephadexG150柱层析.结果表明:sephadexG75对纤维素酶的分离效果最佳,并获得了一个CMC酶组份,其比活力提高到原来的49倍,回收率为416%.  相似文献   

10.
从造纸厂污泥中获得一株产高温纤维素酶的真菌XM5,经形态学和ITS序列分析,鉴定其为土曲霉(Aspergillus terreus).在稻草液体发酵培养基中,土曲霉XM5所产纤维素酶的合成模式为同步合成型.酶学性质研究表明,该纤维素酶的最适作用温度是65℃,在80℃下保温2 h活力残留40%以上,最适作用pH为4.0,在pH4.0~7.0内较稳定,实验结果表明,该菌株所产纤维素酶具有较好的温度稳定性和pH稳定性.  相似文献   

11.
高产纤维素酶菌株的筛选及产酶条件研究   总被引:39,自引:5,他引:39  
从霉变的玉米芯中筛选到一株高产纤维素酶的菌株,经18S rRNA基因序列分析和菌株形态特性分析,确定该菌株为灰绿曲霉(Aspergillus glaucus).利用固体纤曲培养产生纤维素酶,研究了培养基起始pH值、培养温度、培养时间、接种量、氮源、稻草粉与麸皮比例、表面活性剂等对菌株产酶的影响.在最适条件下菌株培养72h后,羧甲基纤维素酶(CMCase)活力高达6812U/g(干曲.下同),滤纸酶活力(FPA)达172U/g.利用该菌株对蔗渣进行分解.其糖化率达36.4%.  相似文献   

12.
黑曲霉Sta—122菌株产纤维素酶的研究   总被引:7,自引:0,他引:7  
从兰州水烟上分离了一株曲霉菌,它具有分解纤维素的能力。经鉴定为黑曲霉(Aspergillus niger)。为了便于应用,我们对它进行了诱变处理,结果CMC和FP活性均有不同程度提高;同时对它的产酶条件和酶学性质也作了研究。  相似文献   

13.
以稻草秸秆原料,利用曲霉sp.HX-1固态发酵生产纤维素酶,研究了不同发酵时间、不同氮源和氮源浓度对曲霉sp.HX-1纤维素酶系的影响,并最终用硫酸铵分级沉淀和低温冷冻干燥的方法得到混合纤维素酶干品.结果表明,发酵6 d后稻草秸秆产生的纤维素酶活力单位最大,分别为CMC酶307 U/mL,C1酶841 U/mL、β-葡萄糖苷酶205 U/mL.以不同氮源优化发酵条件时发现,NH4NO3质量浓度为1 g/L时CMC酶活力达到1 652 U/mL,且失重率也到达最大值17.42%;NH4Cl质量浓度为0.5 g/L时,C1酶活力达到1 807 U/mL;尿素(UREA)质量浓度为2.0 g/L时,β-葡萄糖苷酶活力为2 033 U/mL,这表明氮源对曲霉sp.HX-1纤维素酶系的影响很大.最后在NH4NO3质量浓度为1.0 g/L的条件下,将120 g稻草秸秆发酵6 d,从发酵液中提取得到8.851 7 g混合纤维素酶的干品.此实验为以后探讨碳源或者其他因素的影响提供方法借鉴,也可以为获得纤维素酶混合酶干品的获得提供参考方法.  相似文献   

14.
分批补料合成纤维素酶扩大试验   总被引:3,自引:1,他引:3  
研究了里氏木霉以纸浆为碳源分批补料制备纤维素酶。里氏木霉在10L发酵罐中以纸浆为碳源间歇式发酵合成纤维素酶,培养基中碳源浓度为15g/L时,滤纸酶活力、纤维二糖酶活力、酶产率和酶得率分别为2.15FPIU/mL、0.20IU/mL、16.3FPIU/(L·h)和143.3FPIU/g;碳源浓度提高到27.5g/L,采用分批补加碳源的方法,滤纸酶活力、纤维二糖酶活力、酶产率和每克纸浆酶得率分别为3.90FPIU/mL、0.35IU/mL、23.2FPIU/(L·h)和141.8FPIU。研究表明,提高培养基中碳源浓度,采用补料分批发酵技术,产酶时酶活力和酶产率随着培养基中碳源浓度的提高而提高,且保持酶得率不变,达到了降低产酶成本的目的。  相似文献   

15.
关于黑曲霉生产纤维二糖酶发酵条件的研究   总被引:2,自引:0,他引:2  
作者通过单因子及正交试验,研究了C源、N源、磷酸盐及吐温-80对纤维二糖酶产量的影响,并对温度、时间、pH值和培养基含水量等培养条件进行优化,使黑曲霉生产纤维二糖酶的酶活量由343.1U/g增至908.2U/g,提高了165%。  相似文献   

16.
海洋灰绿曲霉HB1-19的高度剪切敏感性给反应器发酵造成很大困难。曲霉中的UDP-半乳糖基转移酶UgtA和UDP-葡萄糖差向异构酶UgeA对细胞壁的合成起着重要的作用。本文拟研究海洋灰绿曲霉中这两种酶在细胞壁合成中的作用及其与剪切敏感性的关系。首先,采用简并PCR与染色体步移技术克隆了海洋灰绿曲霉AgugtA和AgugeA的基因序列。然后,通过逆转录PCR确定了内含子及编码序列。AgugtA全长1 377bp,有4个内含子,分别位于135~192,261~327,552~601,1 047~1 096bp之间,编码蛋白大小为383个氨基酸。AgugeA全长1 322bp,有3个内含子,分别位于30~116,352~420和878~927bp之间,编码蛋白大小为371个氨基酸。通过进化树分析发现,AgugtA和AgugeA在灰绿曲霉及曲霉属其他菌株中有很高的同源性。通过比较海洋灰绿曲霉及模式菌构巢曲霉的AgugeA基因敲除及AgugeA蛋白抑制剂实验发现,AgugeA是海洋灰绿曲霉的必需基因,这可能与海洋灰绿曲霉的高度剪切敏感性有关。  相似文献   

17.
黑曲霉产纤维素酶系各组分特性及酶解条件   总被引:1,自引:0,他引:1  
采用正交实验法分析出黑曲霉 3.316纤维素酶系各组分最适酶解条件 ,其组合分别为 C1酶 (p H5.0 ,4 5℃ ) ,Cx 酶 (p H3.5,6 5℃ )和 βG酶 (p H4 .5,6 5℃ ) .在液体发酵条件下 ,添加质量分数为 0 .0 0 3的碳酸钙时 ,各组分酶活性最高 ,其中以 C1酶明显增高 ,Cx 酶几乎无影响 ,βG酶则明显降低 .C1和 Cx 比酶活只有在碳酸钙质量分数小于 0 .0 0 5时才有提高 ,βG酶则明显降低 .添加蛋白胨 ,C1和 βG酶的最高酶活在碳酸钙质量分数小于 0 .0 0 3时有增加 ,Cx 酶则无明显变化 .碳酸钙和蛋白胨对各组分最高酶活形成时间均无影响 .在各组分酶分泌规律方面 ,仅有碳酸钙对 C1和βG酶有一定影响  相似文献   

18.
本试验以里氏木霉Tr-H为出发菌株,对其浅盘培养条件及酶活测定方法进行优化,结果,当接种量为0.3%,初始PH值2.0,料层厚度2.5cm时,28℃培养160小时,50℃浸提,酶活从原来的280mgG/g.h提高到600mG/g.h;扣盘使酶活下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号