首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
HEV再生制动时NiMH电池快速充电策略与仿真   总被引:1,自引:0,他引:1  
基于镍氢电池性能实验结果,分析了轻度HEV用镍氢电池在不同SOC情况下不同充电电流的最高温度、温差变化趋势.结合混合动力汽车镍氢电池实际工作情况和电池快速充电理论,基于马斯定律提出了适合混合动力汽车再生制动的镍氢电池恒流分阶段充电控制策略,并进行了HEV镍氢电池快速充电过程的建模与仿真.通过对比该快速充电策略、保护电压恒流充电策略和40 A恒流充电策略下的仿真结果,验证了所提出的电池分阶段恒流充电控制策略的正确性和可行性.  相似文献   

2.
李景民 《科技资讯》2008,(36):30-30
本文介绍一种以PIC16F877单片机为核心的智能充电器,该充电器对充电过程进行全面管理,解决了充电检测和故障诊断的关键技术,实现了智能充电。并对充电电流、电压自动检测调整,分段恒流充电,充满后自动转为恒压浮充状态,使充电过程按理想的充电曲线进行,达到既保护电池,又能使电池充满的最佳效果,并且具有故障自动报警和保护等特点。  相似文献   

3.
本文结合市场上最常见的两种充电器——恒流充电器和自动充电器,利用AT89C2051制作了一种恒流自动充电器.这种充电器既有恒流充电器的简单结构;又有自动充电器的快速和安全.该充电器采用恒流充电,充电电流分大小两档,可以自由选择,并有电压检测.充满后自动转为绢流充电,以防止电池放电.本文阐述了该充电器的设计原理,从硬件和软件两个方面进行了讨论,并对电路的实现进行了介绍.  相似文献   

4.
本文设计了一种针对镍镉电池的智能恒流充电器,具有结构简单、充电快速的特点,采用恒流充电的方式,对电池进行充电,有电压检测功能,转换电路由MOSFET功率开关来控制电流大小的切换,实现充满后自动转为涓流充电且报警提醒,保护电池寿命。在电路中用AT89C2051单片机来实现控制作用,从软硬件两个方面来共同实现,且整个充电过程可由单片机控制的指示灯看到。  相似文献   

5.
为了研究材料的电特性,设计了一种智能LiMn_2O_4材料电特性测试仪.主要介绍了硬件核心单元充放电模块的设计, 根据锂离子电池的特点采用二阶段法充电.系统采用继电器对电路的充放电状态进行切换,采用多路开关4053对电池通道进行切换,其两组开关在恒流充电与恒压充电电路中接入不同的位置,从而实现了采用恒流转恒压的充电方式.  相似文献   

6.
针对目前的超级电容组充电策略存在过压风险和容量利用率较低的缺陷,在现有充电方法的基础上,提出一种动态分段超级电容充电控制策略,提高了超级电容容量利用率.该方法划分为恒流充电、恒压充电与浮充3个阶段,恒流充电又划分为启动阶段、恒流阶段与充电终止阶段,恒压充电根据单体电压动态确定,设计了状态机实现该方法.采用带有均压电路的串联电容组模型进行仿真实验以验证充电效果.仿真结果表明:该方法可将超级电容利用率提高9%.  相似文献   

7.
硅盐电池快速充电的试验与研究   总被引:2,自引:1,他引:1  
根据电池快速充电的原理,对硅盐电池进行充电试验,提出适用于该电池5段恒流快速充电和定压补充充电的充电方案,并在各种控制参量的基础上,给出了实现这种充电过程的控制方法。  相似文献   

8.
电动汽车的发展带动了动力电池研究的兴起,动力电池性能测试是动力电池研究的基础,本文基于MATLAB GUI设计了一种电池测试平台,通过电池充电子系统,电池放电子系统以及电池工况测试子系统可以使用户方便地对电池进行恒流恒压充电,电池放电测试以及电池充放电工况测试,能够满足电池合理充电、电池性能测试、电池模型验证以及算法研究等需求.经实验验证,本测试平台具有较高的精度和较强的可拓展性.  相似文献   

9.
锂离子电池的健康状态估计是锂离子电池寿命评估和健康管理的基础.文中针对实际应用场景中充电数据的缺失,提出一种实用的多阶段电池的健康状态估计方法.研究中根据电压大小,将充电过程划分为3个阶段,分别提出了具有针对性的电池的健康状态估计方法.特别是对于恒流电压过渡阶段,在恒流数据和电压数据都严重缺失地情况下,利用卷积神经网络的数据挖掘能力,直接建立了电压电流数据与电池的健康状态的关系,在锂离子电池的长期老化实验数据研究基础上对所提出的方法进行了验证.结果表明,该方法具有估计精度高、应对严重数据缺失的能力强、对电池不一致性鲁棒性强等优点.  相似文献   

10.
比较了各种倍率恒流充电和脉冲充电过程中N i-MH电池的温度和内压,进行了在动力电池工作荷电状态范围内的300周高倍率循环测试,并对循环前后电池正负极电位、储氢合金形貌、循环伏安特性的变化进行了研究.实验结果表明,高倍率充放电循环使电池性能下降的主要原因是负极合金性能的恶化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号