首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holland G  Ballentine CJ 《Nature》2006,441(7090):186-191
The relationship between solar volatiles and those now in the Earth's atmosphere and mantle reservoirs provides insight into the processes controlling the acquisition of volatiles during planetary accretion and their subsequent evolution. Whereas the light noble gases (helium and neon) in the Earth's mantle preserve a solar-like isotopic composition, heavy noble gases (argon, krypton and xenon) have an isotopic composition very similar to that of the modern atmosphere, with radiogenic and (in the case of xenon) solar contributions. Mantle noble gases in a magmatic CO2 natural gas field have been previously corrected for shallow atmosphere/groundwater and crustal additions. Here we analyse new data from this field and show that the elemental composition of non-radiogenic heavy noble gases in the mantle is remarkably similar to that of sea water. We challenge the popular concept of a noble gas 'subduction barrier'--the convecting mantle noble gas isotopic and elemental composition is explained by subduction of sediment and seawater-dominated pore fluids. This accounts for approximately 100% of the non-radiogenic argon and krypton and 80% of the xenon. Approximately 50% of the convecting mantle water concentration can then be explained by this mechanism. Enhanced recycling of subducted material to the mantle plume source region then accounts for the lower ratio of radiogenic to non-radiogenic heavy noble gas isotopes and higher water content of plume-derived basalts.  相似文献   

2.
Owen T  Bar-Nun A  Kleinfeld I 《Nature》1992,358(6381):43-46
Models that trace the origin of noble gases in the atmospheres of the terrestrial planets (Venus, Earth and Mars) to the 'planetary component' in chondritic meteorites confront several problems. The 'missing' xenon in the atmospheres of Mars and Earth is one of the most obvious; this gas is not hidden or trapped in surface materials. On Venus, the absolute abundances of neon and argon per gram of rock are higher even than those in carbonaceous chondrites, whereas the relative abundances of argon and krypton are closer to solar than to chondritic values (there is only an upper limit on xenon). Pepin has developed a model that emphasizes hydrodynamic escape of early, massive hydrogen atmospheres to explain the abundances and isotope ratios of noble gases on all three planets. We have previously suggested that the unusual abundances of heavy noble gases on Venus might be explained by the impact of a low-temperature comet. Further consideration of the probable history of the martian atmosphere, the noble-gas data from the (Mars-derived) SNC meteorites and laboratory experiments on the trapping of noble gases in ice lead us to propose here that the noble gases in the atmospheres of all of the terrestrial planets are dominated by a mixture of an internal component and contribution from impacting icy planetesimals (comets). If true, this hypothesis illustrates the importance of impacts in determining the volatile inventories of these planets.  相似文献   

3.
Owen T  Mahaffy P  Niemann HB  Atreya S  Donahue T  Bar-Nun A  de Pater I 《Nature》1999,402(6759):269-270
The four giant planets in the Solar System have abundances of 'metals' (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.  相似文献   

4.
Koscheev AP  Gromov MD  Mohapatra RK  Ott U 《Nature》2001,412(6847):615-617
Diamond grains are the most abundant presolar grains found in primitive meteorites. They formed before the Solar System, and therefore provide a record of nuclear and chemical processes in stars and in the interstellar medium. Their origins are inferred from the unusual isotopic compositions of trace elements-mainly xenon-which suggest that they came from supernovae. But the exact nature of the sources has been enigmatic, as has the method by which noble gases were incorporated into the grains. One observation is that different isotopic components are released at different temperatures when the grains are heated, and it has been suggested that these components have different origins. Here we report results of a laboratory study that shows that ion implantation (previously suggested on other grounds) is a viable mechanism for trapping noble gases. Moreover, we find that ion implantation of a single isotopic composition can produce both low- and high-temperature release peaks from the same grains. We conclude that both isotopically normal and anomalous gases may have been implanted by multiple events separated in space and/or time, with thermal processing producing an apparent enrichment of the anomalous component in the high-temperature release peak. The previous assumption that the low- and high-temperature components were not correlated may therefore have led to an overestimate of the abundance of anomalous argon and krypton, while obscuring an enhancement of the light-in addition to the heavy-krypton isotopes.  相似文献   

5.
采用第一原理赝势平面波方法研究了TiAl-X(X为4d过渡金属)超胞合金体系的几何、能量与电子结构。通过对Ti7Al8X与Ti8Al7X超胞的合金形成能的计算、比较与分析发现:合金化元素的外层电子数,特别是外层的d电子数对其在L10-TiAl合金中的占位有非常明显的影响,d电子数较少的前过渡金属Y,Zr,Nb和Mo主要优先占据Ti原子位,而d电子数较多甚至是满d壳层的Rh,Pd,Ag和Cd则主要优先占据Al原子位。而介于这两种情况中间的Tc和Ru合金化元素,表现出微弱的趋势,分别偏重占据Ti原子位和Al原子位。通过合金化元素价电子态密度图的变化,较好地解释了4d过渡金属在L10-TiAl合金中的占位规律。  相似文献   

6.
Abundances and isotopic compositions of noble gases (He, Ne, Ar, Kr) with various existence states in carbonate rocks from the Tacan1 Well have been investigated by means of the stepwise heating technique. The elemental abundance patterns of noble gases in the samples show the enrichment of heavy noble gases and depletion of 20Ne relative to the atmosphere, which are designated as type-Ⅰand are similar to that observed in water, natural gases and sedimentary rocks. The 3He/4He ratios of deep carbonate samples at lower and medium temperature (300—700℃) and a majority of samples at higher temperature (1100—1500℃) steps are very similar to those of natural gases in the same strata in this area, this feature of radiogenic crustal helium shows that the Tazhong Uplift is relatively stable. However, significant helium and argon isotopic anomalies are found at the 1100℃ step in the Middle-Upper Ordovician carbonate rock, suggesting the incorporation of mantle-derived volatiles, this may be due to minor igneous minerals contained in sedimentary carbonate rocks. The 40Ar/ 36Ar ratios in the Cambrian carbonate rock are slightly higher than those in Ordovician carbonate rocks, which may reflect the influence of the chronologic accumulation effect of crust radiogenic 40Ar. Argon isotopes of various existence states in source rocks are much more different, both 38Ar/ 36Ar and 40Ar/ 36Ar ratios at the higher temperature steps are higher than those at the lower temperature steps.  相似文献   

7.
Tomioka H  Iwamoto E  Itakura H  Hirai K 《Nature》2001,412(6847):626-628
Most molecules are held together by covalent bonds-electron pairs jointly shared by the two atoms that are linked by the bond. Free radicals, in contrast, have at least one unpaired electron. In the case of carbon-based radicals, the carbon atom at the radical centre no longer makes four bonds with other atoms as it would do in its normal, tetravalent state. The presence of unpaired electrons renders such radicals highly reactive, so they normally occur only as transient intermediates during chemical reactions. But the discovery by Gomberg in 1900 of triphenylmethyl, the first relatively stable free radical containing a central trivalent carbon atom, illustrated that radicals with suitable geometrical and electronic structures can be stable. Compounds containing a divalent carbon atom that uses only two of its four valence electrons for bonding are usually less stable than Gomberg-type radicals with trivalent carbon. Although the role of these so-called carbenes in chemical reactions has long been postulated, they were unambiguously identified only in the 1950s. More recently, stable carbenes have been prepared, but the singlet state of these molecules, with the two nonbonding valence electrons paired, means that they are not radicals. Carbenes in the second possible electronic state, the triplet state, are radicals: the two nonbonding electrons have parallel spins and occupy different orbitals. Here we report the preparation and characterization of a triplet carbene, whose half-life of 19 minutes at room temperature shows it to be significantly more stable than previously observed triplet carbenes.  相似文献   

8.
Noble-gas geochemistry is an important tool for understanding planetary processes from accretion to mantle dynamics and atmospheric formation. Central to much of the modelling of such processes is the crystal-melt partitioning of noble gases during mantle melting, magma ascent and near-surface degassing. Geochemists have traditionally considered the 'inert' noble gases to be extremely incompatible elements, with almost 100 per cent extraction efficiency from the solid phase during melting processes. Previously published experimental data on partitioning between crystalline silicates and melts has, however, suggested that noble gases approach compatible behaviour, and a significant proportion should therefore remain in the mantle during melt extraction. Here we present experimental data to show that noble gases are more incompatible than previously demonstrated, but not necessarily to the extent assumed or required by geochemical models. Independent atomistic computer simulations indicate that noble gases can be considered as species of 'zero charge' incorporated at crystal lattice sites. Together with the lattice strain model, this provides a theoretical framework with which to model noble-gas geochemistry as a function of residual mantle mineralogy.  相似文献   

9.
Feng J  Hennig RG  Ashcroft NW  Hoffmann R 《Nature》2008,451(7177):445-448
High pressure is known to influence electronic structure and crystal packing, and can in some cases even induce compound formation between elements that do not bond under ambient conditions. Here we present a computational study showing that high pressure fundamentally alters the reactivity of the light elements lithium (Li) and beryllium (Be), which are the first of the metals in the condensed state and immiscible under normal conditions. We identify four stoichiometric Li(x)Be(1-x) compounds that are stable over a range of pressures, and find that the electronic density of states of one of them displays a remarkable step-like feature near the bottom of the valence band and then remains almost constant with increasing energy. These characteristics are typical of a quasi-two-dimensional electronic structure, the emergence of which in a three-dimensional environment is rather unexpected. We attribute this observation to large size differences between the ionic cores of Li and Be: as the density increases, the Li cores start to overlap and thereby expel valence electrons into quasi-two-dimensional layers characterized by delocalized free-particle-like states in the vicinity of Be ions.  相似文献   

10.
Genda H  Abe Y 《Nature》2005,433(7028):842-844
The atmospheric compositions of Venus and Earth differ significantly, with the venusian atmosphere containing about 50 times as much 36Ar as the atmosphere on Earth. The different effects of the solar wind on planet-forming materials for Earth and Venus have been proposed to account for some of this difference in atmospheric composition, but the cause of the compositional difference has not yet been fully resolved. Here we propose that the absence or presence of an ocean at the surface of a protoplanet during the giant impact phase could have determined its subsequent atmospheric amount and composition. Using numerical simulations, we demonstrate that the presence of an ocean significantly enhances the loss of atmosphere during a giant impact owing to two effects: evaporation of the ocean, and lower shock impedance of the ocean compared to the ground. Protoplanets near Earth's orbit are expected to have had oceans, whereas those near Venus' orbit are not, and we therefore suggest that remnants of the noble-gas rich proto-atmosphere survived on Venus, but not on Earth. Our proposed mechanism explains differences in the atmospheric contents of argon, krypton and xenon on Venus and Earth, but most of the neon must have escaped from both planets' atmospheres later to yield the observed ratio of neon to argon.  相似文献   

11.
Bouhifd MA  Jephcoat AP 《Nature》2006,439(7079):961-964
Understanding of the crystal chemistry of the Earth's deep mantle has evolved rapidly recently with the gradual acceptance of the importance of the effect of minor elements such as aluminium on the properties of major phases such as perovskite. In the early Earth, during its formation and segregation into rocky mantle and iron-rich core, it is likely that silicate liquids played a large part in the transport of volatiles to or from the deep interior. The importance of aluminium on solubility mechanisms at high pressure has so far received little attention, even though aluminium has long been recognized as exerting strong control on liquid structures at ambient conditions. Here we present constraints on the solubility of argon in aluminosilicate melt compositions up to 25 GPa and 3,000 K, using a laser-heated diamond-anvil cell. The argon contents reach a maximum that persists to pressures as high as 17 GPa (up to 500 km deep in an early magma ocean), well above that expected on the basis of Al-free melt experiments. A distinct drop in argon solubility observed over a narrow pressure range correlates well with the expected void loss in the melt structure predicted by recent molecular dynamics simulations. These results provide a process for noble gas sequestration in the mantle at various depths in a cooling magma ocean. The concept of shallow partial melting as a unique process for extracting noble gases from the early Earth, thereby defining the initial atmospheric abundance, may therefore be oversimplified.  相似文献   

12.
惰性气体含量对深层地下水形成温度的示踪意义分析   总被引:3,自引:0,他引:3  
惰性气体在地下水中的溶解量主要取决于水温和气体分压 ,而且溶解度在常见的水温范围内是水温的单调函数 .因此 ,当深层地下水系统处于封闭状态 ,系统中不存在蜕变成因或变质成因的惰性气体源时 ,可将溶解的惰性气体作为指示地下水形成温度的天然示踪剂 .  相似文献   

13.
惰性气体在地下水中的溶解量主要取决于水温和气体分压.而且溶解度在常见的水温范围内是水温的单调函数.因此,当深层地下水系统处于封闭状态,系统中不存在蜕变成因的惰性气体源时,可将溶解的惰性气体作为指示地下水形成温度的天然示踪剂.  相似文献   

14.
等价式在簇合物中的应用   总被引:1,自引:0,他引:1  
介绍了分子或复杂离子的等价式概念,等价式与分子或复杂离子具有相同的价电子数.等价式与分子或复杂离子的结构及它们中的每个原子的成键情况是紧密联系的,同时等价式仅与价电子有关,而与内层电子无关.在等价式中,各种键型之间存在着明确的数学关系式,这个数学关系式完全适用于任何类型的化合物,并且无任何错误之处,同时也扩大了半拓扑图式理论的应用范围.簇合物中存在的键型种类多,成键情况比较复杂.列出了主族原子簇合物和过渡金属簇合物中各种键型之间所符合的数学关系式,这样等价式概念在簇合物中得到了应用,处理结果令人满意。  相似文献   

15.
针对暗物质探测器中降低介质液氙中放射性氪-85含量可获得高纯度氙的问题,通过McCabe-Thiele(M T)法及质量、能量守恒,设计并研制出一种将氪从氙中提取出且可获得高纯度氙气的高效低温精馏系统.该精馏系统中的主要结构精馏塔采用填料塔形式,填料为高效新型规整填料PACK-13C,塔高4 m,直径80 mm,其中精馏段1.9 m,提馏段2.1 m.该精馏系统可以在回收率为99%的情况下,以5 kg/h(15SLPM)的速率将氙中氪的含量从10-9降低到10-12,这对要求高精度、高灵敏度、低本底的大型暗物质探测器的研制至关重要.  相似文献   

16.
Singlet carbenes exhibit a divalent carbon atom whose valence shell contains only six electrons, four involved in bonding to two other atoms and the remaining two forming a non-bonding electron pair. These features render singlet carbenes so reactive that they were long considered too short-lived for isolation and direct characterization. This view changed when it was found that attaching the divalent carbon atom to substituents that are bulky and/or able to donate electrons produces carbenes that can be isolated and stored. N-heterocyclic carbenes are such compounds now in wide use, for example as ligands in metathesis catalysis. In contrast, oxygen-donor-substituted carbenes are inherently less stable and have been less studied. The pre-eminent case is hydroxymethylene, H-C-OH; although it is the key intermediate in the high-energy chemistry of its tautomer formaldehyde, has been implicated since 1921 in the photocatalytic formation of carbohydrates, and is the parent of alkoxycarbenes that lie at the heart of transition-metal carbene chemistry, all attempts to observe this species or other alkoxycarbenes have failed. However, theoretical considerations indicate that hydroxymethylene should be isolatable. Here we report the synthesis of hydroxymethylene and its capture by matrix isolation. We unexpectedly find that H-C-OH rearranges to formaldehyde with a half-life of only 2 h at 11 K by pure hydrogen tunnelling through a large energy barrier in excess of 30 kcal mol(-1).  相似文献   

17.
Ott U  Begemann F  Yang J  Epstein S 《Nature》1988,332(6164):700-702
Current theories on the origin of the chemical elements explain the abundance of medium-heavy and heavy nuclides to be due to the capture by pre-existing lighter nuclides of free neutrons on either a slow timescale (s-process) or a rapid timescale (r-process). Experimental evidence in support of these theories comes from the analysis of carbonaceous chondrites. In acid-resistant residues of these meteorites a kind of xenon has been found, the isotopic composition of which matches almost perfectly that predicted for s-process xenon. We report data that allow us, for the first time, to derive with reasonable precision the full isotopic spectrum of s-process krypton as well. We show that this s-Kr in a residue from Murchison meteorite did not originate in one single s-process but rather is a mixture of contributions from stellar environments where the density of free neutrons was not the same. The astrophysical conditions under which this Krypton has been produced were distinct from those that have been invoked to explain the Solar System s-process abundance. Similar to the 13C-rich carbon component in an aliquot of the same residue, the s-process Kr from different astrophysical sites has retained its identity during the accumulation and subsequent history of the meteorite.  相似文献   

18.
用SHML理论模型计算了Ar和Kr混合物的不透明度,研究了温度在100~900 eV,密度在0.5~2 g/cm3范围内Ar和Kr混合物平均不透明度随等离子体密度和温度的变化规律.结果显示,平均不透明度增高或降低的现象不仅与混合物有关,而且与等离子体的温度有关.在100~200eV的较低温度下,Ar和Kr混合后的平均不透明度比纯氪低,但在800~900eV的较高温度范围内,Ar和Kr混合后的平均不透明度却比它们为纯元素时出现了增高.不透明度的增高有利于减小杂质离子辐射对聚变反应的破坏.  相似文献   

19.
用经典物理的办法解释了电子隧道效应,认为电子隧道效应是导体中的自由电子扩散到绝缘层中,使得绝缘层中的价电子能态升高,由束缚态(局域态)转变成自由态(公有化态),从而参与裁流的现象:导体中的自由电子扩散到绝缘层中,由于库仑斥力的作用,使得绝缘层中的价电子在晶格势场中的能态升高,降低了势垒高度,同时,由于载流子定向运动产生的霍尔电场对价电子做功及电流产生的焦耳热也使得价电子能态升高。在三个因素的影响之下,绝缘层中价电子能态升高,由局域态转变成自由状态,从而参与载流。根据绝缘层厚度和隧道效应的尺寸,可以判定金属中价电子对绝缘层中价电子的作用范围大约是十几A的限度.  相似文献   

20.
本文在三价原子非相对论性能级结构的一般理论的基础上,计算(np)2(np)组态的非相对论哈密顿矩阵元,并通过求解对应的久期方程得到(np)2(np)电子组态的非相对论谱项结构的表达式,并进一步使用变分原理来确定其中的Slater-Condon径向积分,从而最终求解出具体的谱项能量数值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号