共查询到16条相似文献,搜索用时 93 毫秒
1.
给出某些7-连通图中某些最长圈上的可收缩边的分布情况,得到如下结果:某些7-连通图的某些最长圈上至少有2条可收缩边. 相似文献
2.
3.
4.
袁旭东 《广西师范大学学报(自然科学版)》1995,13(2):5-8
n连通图的可收缩边,人们分别在图中无三角形及图G的最小度≥3/2n-1时等情况中,给出了边数下界,利用边断片给出了n连通图在边原子阶≥n/2时可收缩边的下界,进而给出在最小度≥4/3n-1时的边数下界。 相似文献
5.
6.
7.
证明了对k-连通图G,若G的任意一个断片满足当N(F)中含有边就有|F|k/4,则G至少有2条可收缩边. 相似文献
8.
给出了k-连通图中最长圈上的可收缩边的数目,得到如下结果:任意断片的阶至少为「k/2+1 的k-连通图中最长圈上至少有3 条可收缩边;更进一步,若该k-连通图中存在哈密顿圈,则哈密顿圈上至少有6 条可收缩边。 相似文献
9.
收缩临界6连通图中的6度顶点 总被引:2,自引:0,他引:2
如果6连通图的一条边收缩后使得所得到的图仍是6连通,则这条边称为6可收缩边.一个不包含6可收缩边的非完全图被称为收缩临界6连通图.由Egawa的结果可知收缩临界6连通图中有6度点.设G是收缩临界6连通图,用V6表示G中6度点的集合.Ando等人通过证明存在常数c使得|V6|>c|V(G)|且c≥(1)/(7).现将这一常数改进为c≥(1)/(5). 相似文献
10.
采用分类讨论的方法,研究了6-连通图中可收缩边在完美匹配上的分布情况,得到了如下新结果.设G是阶大于12的6-连通图,M是G的一个完美匹配,若图G的任意断片的阶都大于3,则M上至少有2条可收缩边. 相似文献
11.
给出某些4-连通图中圈上的可收缩边和可去边的分布情况,得到如下结果:最小度至少为4或围长至少为5的4-连通图。其任一圈上至少有两条可去边;对4-连通图中的某些最长圈上至少有两条可收缩边。 相似文献
12.
13.
利用扇,断片及简约图的概念,得到不为轮的极小3连通图的非基本边数与其简约图的非基本边数相等,从而将求极小3连通图的非基本边数问题转化为求其简约图的非基本边数问题后,给出简约极小3连通图非基本边数的一个下界,刻画了达到下界的图类. 相似文献
14.
孙学红 《清华大学学报(自然科学版)》1991,(3)
在 H.A.Jung定理的基础上,讨论T 2-连通正则图中最长 ab-路 Pab的路长。设G是n阶k正则具有二分类(V1,V2)的偶图,对任意a,b∈V(G).a≠b, 若有或 a. b ∈ V2则称G有Hamilton性质。一个非偶图若是Hamilton连通的,则称为具有Hamilton性质。限制{a,b}不是G的割集,具有上述性质的G称为有弱Hamilton性质。作者得到如下定理:令G是2-连通k正则的图,且|G|≤3k-2(k≥9).则G有弱Hamilton性质。 相似文献
15.
给出了4连通图中可去边的一些性质.利用4连通图的可去边,给出了4连通图的Kuratowski定理的一个较简单证明. 相似文献
16.
图的可收缩边与可去边是研究连通图的构造和使用归纳法证明连通图的一些性质的有力工具.本文利用边点割端片的性质给出某些4连通图中在特定子图上可去边的分布情况,得到了4连通图图上存在至少两条可去边的更一般的充分条件,改进了吴吉昌等的结果.同时给出4连通图4圈上和边点割原子及分离对上的可去边的分布. 相似文献