首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 716 毫秒
1.
Value‐at‐risk (VaR) is a standard measure of market risk in financial markets. This paper proposes a novel, adaptive and efficient method to forecast both volatility and VaR. Extending existing exponential smoothing as well as GARCH formulations, the method is motivated from an asymmetric Laplace distribution, where skewness and heavy tails in return distributions, and their potentially time‐varying nature, are taken into account. The proposed volatility equation also involves novel time‐varying dynamics. Back‐testing results illustrate that the proposed method offers a viable, and more accurate, though conservative, improvement in forecasting VaR compared to a range of popular alternatives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Volatility plays a key role in asset and portfolio management and derivatives pricing. As such, accurate measures and good forecasts of volatility are crucial for the implementation and evaluation of asset and derivative pricing models in addition to trading and hedging strategies. However, whilst GARCH models are able to capture the observed clustering effect in asset price volatility in‐sample, they appear to provide relatively poor out‐of‐sample forecasts. Recent research has suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify correctly the ‘true volatility’ measure against which forecasting performance is measured. It is argued that the standard approach of using ex post daily squared returns as the measure of ‘true volatility’ includes a large noisy component. An alternative measure for ‘true volatility’ has therefore been suggested, based upon the cumulative squared returns from intra‐day data. This paper implements that technique and reports that, in a dataset of 17 daily exchange rate series, the GARCH model outperforms smoothing and moving average techniques which have been previously identified as providing superior volatility forecasts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The variance of a portfolio can be forecast using a single index model or the covariance matrix of the portfolio. Using univariate and multivariate conditional volatility models, this paper evaluates the performance of the single index and portfolio models in forecasting value‐at‐risk (VaR) thresholds of a portfolio. Likelihood ratio tests of unconditional coverage, independence and conditional coverage of the VaR forecasts suggest that the single‐index model leads to excessive and often serially dependent violations, while the portfolio model leads to too few violations. The single‐index model also leads to lower daily Basel Accord capital charges. The univariate models which display correct conditional coverage lead to higher capital charges than models which lead to too many violations. Overall, the Basel Accord penalties appear to be too lenient and favour models which have too many violations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Value‐at‐risk (VaR) forecasting via a computational Bayesian framework is considered. A range of parametric models is compared, including standard, threshold nonlinear and Markov switching generalized autoregressive conditional heteroskedasticity (GARCH) specifications, plus standard and nonlinear stochastic volatility models, most considering four error probability distributions: Gaussian, Student‐t, skewed‐t and generalized error distribution. Adaptive Markov chain Monte Carlo methods are employed in estimation and forecasting. A portfolio of four Asia–Pacific stock markets is considered. Two forecasting periods are evaluated in light of the recent global financial crisis. Results reveal that: (i) GARCH models outperformed stochastic volatility models in almost all cases; (ii) asymmetric volatility models were clearly favoured pre crisis, while at the 1% level during and post crisis, for a 1‐day horizon, models with skewed‐t errors ranked best, while integrated GARCH models were favoured at the 5% level; (iii) all models forecast VaR less accurately and anti‐conservatively post crisis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
ARCH and GARCH models are substantially used for modelling volatility of time series data. It is proven by many studies that if variables are significantly skewed, linear versions of these models are not sufficient for both explaining the past volatility and forecasting the future volatility. In this paper, we compare the linear(GARCH(1,1)) and non‐linear(EGARCH) versions of GARCH model by using the monthly stock market returns of seven emerging countries from February 1988 to December 1996. We find that for emerging stock markets GARCH(1,1) model performs better than EGARCH model, even if stock market return series display skewed distributions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Recently, support vector machine (SVM), a novel artificial neural network (ANN), has been successfully used for financial forecasting. This paper deals with the application of SVM in volatility forecasting under the GARCH framework, the performance of which is compared with simple moving average, standard GARCH, nonlinear EGARCH and traditional ANN‐GARCH models by using two evaluation measures and robust Diebold–Mariano tests. The real data used in this study are daily GBP exchange rates and NYSE composite index. Empirical results from both simulation and real data reveal that, under a recursive forecasting scheme, SVM‐GARCH models significantly outperform the competing models in most situations of one‐period‐ahead volatility forecasting, which confirms the theoretical advantage of SVM. The standard GARCH model also performs well in the case of normality and large sample size, while EGARCH model is good at forecasting volatility under the high skewed distribution. The sensitivity analysis to choose SVM parameters and cross‐validation to determine the stopping point of the recurrent SVM procedure are also examined in this study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Value‐at‐risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram‐Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time‐varying higher‐moments models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper adopts the backtesting criteria of the Basle Committee to compare the performance of a number of simple Value‐at‐Risk (VaR) models. These criteria provide a new standard on forecasting accuracy. Currently central banks in major money centres, under the auspices of the Basle Committee of the Bank of International settlement, adopt the VaR system to evaluate the market risk of their supervised banks. Banks are required to report VaRs to bank regulators with their internal models. These models must comply with Basle's backtesting criteria. If a bank fails the VaR backtesting, higher capital requirements will be imposed. VaR is a function of volatility forecasts. Past studies mostly conclude that ARCH and GARCH models provide better volatility forecasts. However, this paper finds that ARCH‐ and GARCH‐based VaR models consistently fail to meet Basle's backtesting criteria. These findings suggest that the use of ARCH‐ and GARCH‐based models to forecast their VaRs is not a reliable way to manage a bank's market risk. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates inference and volatility forecasting using a Markov switching heteroscedastic model with a fat‐tailed error distribution to analyze asymmetric effects on both the conditional mean and conditional volatility of financial time series. The motivation for extending the Markov switching GARCH model, previously developed to capture mean asymmetry, is that the switching variable, assumed to be a first‐order Markov process, is unobserved. The proposed model extends this work to incorporate Markov switching in the mean and variance simultaneously. Parameter estimation and inference are performed in a Bayesian framework via a Markov chain Monte Carlo scheme. We compare competing models using Bayesian forecasting in a comparative value‐at‐risk study. The proposed methods are illustrated using both simulations and eight international stock market return series. The results generally favor the proposed double Markov switching GARCH model with an exogenous variable. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper provides clear‐cut evidence that the out‐of‐sample VaR (value‐at‐risk) forecasting performance of alternative parametric volatility models, like EGARCH (exponential general autoregressive conditional heteroskedasticity) or GARCH, and Markov regime‐switching models, can be considerably improved if they are combined with skewed distributions of asset return innovations. The performance of these models is found to be similar to that of the EVT (extreme value theory) approach. The performance of the latter approach can also be improved if asset return innovations are assumed to be skewed distributed. The performance of the Markov regime‐switching model is considerably improved if this model allows for EGARCH effects, for all different volatility regimes considered. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Since volatility is perceived as an explicit measure of risk, financial economists have long been concerned with accurate measures and forecasts of future volatility and, undoubtedly, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model has been widely used for doing so. It appears, however, from some empirical studies that the GARCH model tends to provide poor volatility forecasts in the presence of additive outliers. To overcome the forecasting limitation, this paper proposes a robust GARCH model (RGARCH) using least absolute deviation estimation and introduces a valuable estimation method from a practical point of view. Extensive Monte Carlo experiments substantiate our conjectures. As the magnitude of the outliers increases, the one‐step‐ahead forecasting performance of the RGARCH model has a more significant improvement in two forecast evaluation criteria over both the standard GARCH and random walk models. Strong evidence in favour of the RGARCH model over other competitive models is based on empirical application. By using a sample of two daily exchange rate series, we find that the out‐of‐sample volatility forecasts of the RGARCH model are apparently superior to those of other competitive models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a new mixed‐frequency approach to predict stock return volatilities out‐of‐sample. Based on the strategy of momentum of predictability (MoP), our mixed‐frequency approach has a model switching mechanism that switches between generalized autoregressive conditional heteroskedasticity (GARCH)‐class models that only use low‐frequency data and heterogeneous autoregressive models of realized volatility (HAR‐RV)‐type that only use high‐frequency data. The MoP model simply selects a forecast with relatively good past performance between the GARCH‐class and HAR‐RV‐type forecasts. The model confidence set (MCS) test shows that our MoP strategy significantly outperforms the competing models, which is robust to various settings. The MoP test shows that a relatively good recent past forecasting performance of the GARCH‐class or HAR‐RV‐type model is significantly associated with a relatively good current performance, supporting the success of the MoP model.  相似文献   

14.
In multivariate volatility prediction, identifying the optimal forecasting model is not always a feasible task. This is mainly due to the curse of dimensionality typically affecting multivariate volatility models. In practice only a subset of the potentially available models can be effectively estimated, after imposing severe constraints on the dynamic structure of the volatility process. It follows that in most applications the working forecasting model can be severely misspecified. This situation leaves scope for the application of forecast combination strategies as a tool for improving the predictive accuracy. The aim of the paper is to propose some alternative combination strategies and compare their performances in forecasting high‐dimensional multivariate conditional covariance matrices for a portfolio of US stock returns. In particular, we will consider the combination of volatility predictions generated by multivariate GARCH models, based on daily returns, and dynamic models for realized covariance matrices, built from intra‐daily returns. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We develop Hawkes models in which events are triggered through self‐excitation as well as cross‐excitation. We examine whether incorporating cross‐excitation improves the forecasts of extremes in asset returns compared to only self‐excitation. The models are applied to US stocks, bonds and dollar exchange rates. We predict the probability of crashes in the series and the value at risk (VaR) over a period that includes the financial crisis of 2008 using a moving window. A Lagrange multiplier test suggests the presence of cross‐excitation for these series. Out‐of‐sample, we find that the models that include spillover effects forecast crashes and the VaR significantly more accurately than the models without these effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This article proposes intraday high‐frequency risk (HFR) measures for market risk in the case of irregularly spaced high‐frequency data. In this context, we distinguish three concepts of value‐at‐risk (VaR): the total VaR, the marginal (or per‐time‐unit) VaR and the instantaneous VaR. Since the market risk is obviously related to the duration between two consecutive trades, these measures are completed with a duration risk measure, i.e. the time‐at‐risk (TaR). We propose a forecasting procedure for VaR and TaR for each trade or other market microstructure event. Subsequently, we perform a backtesting procedure specifically designed to assess the validity of the VaR and TaR forecasts on irregularly spaced data. The performance of the HFR measure is illustrated in an empirical application for two stocks (Bank of America and Microsoft) and an exchange‐traded fund based on Standard & Poor's 500 index. We show that the intraday HFR forecasts capture accurately the volatility and duration dynamics for these three assets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Long‐range persistence in volatility is widely modelled and forecast in terms of the so‐called fractional integrated models. These models are mostly applied in the univariate framework, since the extension to the multivariate context of assets portfolios, while relevant, is not straightforward. We discuss and apply a procedure which is able to forecast the multivariate volatility of a portfolio including assets with long memory. The main advantage of this model is that it is feasible enough to be applied on large‐scale portfolios, solving the problem of dealing with extremely complex likelihood functions which typically arises in this context. An application of this procedure to a portfolio of five daily exchange rate series shows that the out‐of‐sample forecasts for the multivariate volatility are improved under several loss functions when the long‐range dependence property of the portfolio assets is explicitly accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Value‐at‐Risk (VaR) is widely used as a tool for measuring the market risk of asset portfolios. However, alternative VaR implementations are known to yield fairly different VaR forecasts. Hence, every use of VaR requires choosing among alternative forecasting models. This paper undertakes two case studies in model selection, for the S&P 500 index and India's NSE‐50 index, at the 95% and 99% levels. We employ a two‐stage model selection procedure. In the first stage we test a class of models for statistical accuracy. If multiple models survive rejection with the tests, we perform a second stage filtering of the surviving models using subjective loss functions. This two‐stage model selection procedure does prove to be useful in choosing a VaR model, while only incompletely addressing the problem. These case studies give us some evidence about the strengths and limitations of present knowledge on estimation and testing for VaR. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
We investigate the predictive performance of various classes of value‐at‐risk (VaR) models in several dimensions—unfiltered versus filtered VaR models, parametric versus nonparametric distributions, conventional versus extreme value distributions, and quantile regression versus inverting the conditional distribution function. By using the reality check test of White (2000), we compare the predictive power of alternative VaR models in terms of the empirical coverage probability and the predictive quantile loss for the stock markets of five Asian economies that suffered from the 1997–1998 financial crisis. The results based on these two criteria are largely compatible and indicate some empirical regularities of risk forecasts. The Riskmetrics model behaves reasonably well in tranquil periods, while some extreme value theory (EVT)‐based models do better in the crisis period. Filtering often appears to be useful for some models, particularly for the EVT models, though it could be harmful for some other models. The CaViaR quantile regression models of Engle and Manganelli (2004) have shown some success in predicting the VaR risk measure for various periods, generally more stable than those that invert a distribution function. Overall, the forecasting performance of the VaR models considered varies over the three periods before, during and after the crisis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A recent study by Rapach, Strauss, and Zhou (Journal of Finance, 2013, 68(4), 1633–1662) shows that US stock returns can provide predictive content for international stock returns. We extend their work from a volatility perspective. We propose a model, namely a heterogeneous volatility spillover–generalized autoregressive conditional heteroskedasticity model, to investigate volatility spillover. The model specification is parsimonious and can be used to analyze the time variation property of the spillover effect. Our in‐sample evidence shows the existence of strong volatility spillover from the US to five major stock markets and indicates that the spillover was stronger during business cycle recessions in the USA. Out‐of‐sample results show that accounting for spillover information from the USA can significantly improve the forecasting accuracy of international stock price volatility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号