共查询到14条相似文献,搜索用时 109 毫秒
1.
提出了基于LDA(Latent Dirichlet Allocation)主题模型的Web文本分类方法,利用MCMC方法中的Gibbs抽样获得模型参数从而获取词汇的概率分布,使隐藏于WEB文本内的不同主题与WEB文本字词建立关系。将LDA算法应用于WEB文本分类识别领域,在实验中与k均值聚类和贝叶斯网络方法进行了对比,其结果表明LDA与其他同类算法相比具有一定的优势。 相似文献
2.
针对LDA(Latent Dirichlet Allocation)主题模型生成的大量topic,很大部分topic内部词语相关度很低,可解释性差,对语言模型后的应用效果带来一定的影响.针对这一问题,该文提出了一种基于主题加权LDA模型的情感分类方法,该模型实现不同主题中内部相关的词语特征加权计算,能够消除不同主题内具有相关度词语的相互影响.实验结果表明,与传统LDA模型分类方法对比,该文提出的基于主题加权LDA模型的情感分类方法平均F1值提高了6.7%~8.1%,验证了该文提出的方法是有效的,提高了分类效果. 相似文献
3.
针对文本分类中文本数据表示存在稀疏性、维度灾难、语义丢失的问题,提出一种基于单词表示的全局向量(global vectors for word representation, GloVe)模型和隐含狄利克雷分布(latent Dirichlet allocation, LDA)主题模型的文本表示改进方法。利用GloVe模型结合局部信息和全局词语共现的统计信息训练得到文本的稠密词向量,基于LDA主题模型生成文本隐含主题和相应的概率分布,构建文本向量以及基于概率信息的主题向量,并计算两者之间的相似性作为分类器的输入。实验结果表明,相比其他几种文本表示方法,改进方法在精确率、召回率和F_1值上均有所提高,基于GloVe和LDA的文本表示改进方法能有效提升文本分类器的性能。 相似文献
4.
为了提高文本标记和分类的效率,提出了基于概念语义相关性和LDA的文本自动标记算法(Text Mark Label,TML),用以代替人工标记的文本分类标记. 该算法在概念语义相关性计算的基础上,使用LDA(Latent Dirichlet Allocation)提取文本的主题表示,通过计算文本主题从属于各分类目录的期望从而实现文本自动标记. 为验证TML算法的效果,在标准文本分类数据集上使用文本分类器进行有监督文本分类实验. 为对比数据集和分类器对分类效果的影响,在3个数据集(WebKB、Reuters-21578、20-NewsGroup)上分别使用3种不同的分类器(Rocchio、KNN、SVM)进行实验. 实验结果表明:TML算法有效地提高了文本分类效率及文本标记效率. 相似文献
5.
在文本分类的过程中,由于文本数据具有非结构化、高维性、稀疏性的特征,常常会导致分类效果的不理想.由此可知,文本分类的准确性十分依赖于文本表示的效果.本文通过融合Latent Dirichlet Allocation和Doc2vec算法得到一种新的主题向量表示和文档向量表示,再通过计算其中的余弦相似度来提取文本特征.该方... 相似文献
6.
通过主题模型与语义网络对旅游电商中的评论文本进行挖掘,从而引导消费者与商家对评论信息作出重要决策;提出一种基于LDA(Latent Dirichlet Allocation,LDA)主题聚类与语义网络模型(LDA topic clustering and semantic network model,LTC-SNM)的方法对酒店在线评论文本进行研究;获取在线评论文本进行数据预处理,使用Word2vec生成词向量,利用机器学习算法对评论文本进行情感分类;通过LDA主题模型对分类后的文本进行聚类,生成酒店的特征主题词;通过ROSTCM将特征主题词与所修饰的情感词生成语义网络,缓解了挖掘文本信息的复杂性;实验结果表明:提出的LTC-SNM文本挖掘方法使得在线用户评价的主题更具表达性。 相似文献
7.
沈竞 《渝西学院学报(自然科学版)》2011,(6):64-66
在基于LDA的短文本分类基础上进行改进,提出信息增益结合LDA的短文本分类方法.该方法采用信息增益计算词汇对于文本分类的贡献度,提高"作用词"的权重,过滤掉"非作用词",最后对过滤后的短文本进行LDA主题建模,并采用中心向量法建立文本类别模型.实验证明,该方法随着作用词比例的减少,分类性能有较大的提高. 相似文献
8.
沈竞 《重庆文理学院学报(自然科学版)》2011,30(6):64-66
在基于LDA的短文本分类基础上进行改进,提出信息增益结合LDA的短文本分类方法.该方法采用信息增益计算词汇对于文本分类的贡献度,提高"作用词"的权重,过滤掉"非作用词",最后对过滤后的短文本进行LDA主题建模,并采用中心向量法建立文本类别模型.实验证明,该方法随着作用词比例的减少,分类性能有较大的提高. 相似文献
9.
基于LDA的文本聚类在网络舆情分析中的应用研究 总被引:1,自引:0,他引:1
针对传统的基于词语的文本聚类算法忽略了文本中可能具有的隐含信息的问题,提出了一种基于LDA(latent dirichlet allocation)主题模型的文本聚类算法。该方法利用TF-IDF算法和LDA主题模型分别计算文本的相似度,通过耗费函数确定文本相似度的融合系数并进行线性结合来获取文本之间的相似度,同时使用F-measure值来对聚类结果进行评估。在构建LDA主题模型时,采用Gibbs抽样来进行参数估计,通过贝叶斯统计的标准方法进行最优主题数的确定。从仿真实验的聚类结果的准确性和稳定性来看,该方法相比传统的文本聚类算法具有更良好的效果。 相似文献
10.
LDA主题模型是一种有效的文本语义信息提取工具,利用在文档层中实现词项的共现,将词项矩阵转化为主题矩阵,得到主题特征;然而在生成文档过程中会蕴含冗余主题。针对LDA主题模型提取主题特征时存在冗余的不足,提出一种基于邻域粗糙集的LDA主题模型约简算法NRS-LDA。利用邻域粗糙集构造主题决策系统,通过预先设定主题个数,计算出每个主题的重要度;根据重要度进行排序,将排序后重要度低的主题删除。将提出的NRS-LDA算法应用于K-means文本聚类问题上并与传统的文本特征提取算法及改进的算法进行比较,结果表明NRS-LDA方法可以得到更高的聚类精度。 相似文献
11.
随着智能终端的普及,文本的主题挖掘需求也越来越广泛,主题建模是文本主题挖掘的核心,LDA生成模型是基于贝叶斯框架的概率模型,它以语义关联为基础,很好地解决了文本潜在主题的提取问题。对文本聚类过程的核心技术LDA生成模型、数据采样、模型评价等作了较为深入的阐述和解析,结合网络教育平台的2 794篇学习刊物进行了主题发现和聚类实验,建立了包含3 800个词项的词库,通过kmeans算法和合并向量算法(UVM)分两步解决了主题聚类问题。提出了文本挖掘实验的一般方法,并对层次聚类中文本距离的算法提出了改进。实验结果表明,该平台刊物的主题整体相似度比较好,但主题过于集中使得许多刊物的内容不具有辨识度,影响用户对主题的定位。 相似文献
12.
针对多媒体信息中的音频信号,提出一种基于线性判别分析(LDA)与极限学习机(ELM)的分类方法.首先,使用傅里叶变换等方法从每一段音频中提取特征,并将它们按比例组成一个高维向量;其次,应用LDA对高维向量进行降维,使其成为用于分类的最优特征,作为ELM的训练和测试样本;最后,分别采用ELM,SVM,BP分类器对4种音频信号进行分类,并进行性能对比与分析.实验表明:提出的算法对于较难分的类也具有较好的分类效果,平均正确率为90%,同时运算速度比SVM快一千多倍. 相似文献
13.
目的 社交网络中存在着许多暴力话题,暴力话题识别对网络舆情的精准干预和管控具有十分重要的意义。当前网络暴力研究主要集中在用户负面情感计算、暴力用户识别等领域,缺乏对网络暴力组织构成研究,无法在复杂网络环境中精准识别网络暴力的附着载体。方法 通过分析网络暴力在话题内的聚焦特性,提出了一种基于LDA模型和卡方检验的网络暴力话题识别方法,该方法首先运用LDA模型识别网络语料库中的话题,并用相似度计算方法对话题文本进行分类;然后运用卡方检验筛选话题文本中的暴力特征;最后依据情感词典计算各话题内的暴力值,按照暴力密度判断话题的暴力属性。结果/结论 在真实的网络语料库上实验验证了本文方法,实验结果表明:本文方法的暴力话题识别性能(F值)均值为80.64%,优于对比方法,达到了良好的网络暴力话题识别效果。 相似文献
14.
意见挖掘在企业智能分析、政府舆情分析等领域发挥着重要作用,为了充分挖掘主观性文本所蕴含的商业价值和社会价值,提出了一种基于情感主题模型的特征选择方法。该方法重点考察极性词及其共现现象,采用主题模型挖掘出正面褒义主题和负面贬义主题中极性词的分布情况,旨在度量情感特征在情感倾向表达中的重要性。实验阶段结合支持向量机分类器进行分析。实验表明该特征选择方法能有效提高跨领域文本情感分类准确性,具有较好的实用价值。 相似文献