首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地下硐室的开挖将导致岩体应力应变状态的改变及塑性区的产生,开挖导致的围岩松动圈将是贯穿开挖支护及安全运行整个过程的重要问题。松动圈厚度又是决定地下硐室支护设计的因素之一,因此在松动圈与其决定因素间建立函数关系用于计算推导围岩松动圈厚度具有重要意义,不仅可以为支护设计提供参考数据,还能够对工程现场实测得到的松动圈厚度做检验对比。本文基于三维数值模拟,结合数学方法在大量参数组合基础上回归推导出松动圈厚度与地应力,岩体强度,模量间的关系,并用实际工程数据进行验证。  相似文献   

2.
为研究硐室开挖过程中选择支护时机的力学机理,首先,建立圆形硐室分区受力模型,基于Mohr-Coulomb屈服准则,考虑围岩扩容、软化等岩体特性以及“空间效应”,推导出开挖过程中硐室围岩弹塑性解;然后,选择锚杆、衬砌支护时机,考虑锚杆与围岩的耦合作用和初衬混凝土的时效特性,得到支护条件下围岩的弹塑性解;最后,结合算例分析了“空间效应”、支护时机等因素对硐室围岩塑性区应力、位移 和范围的影响。基于理论研究的算例分析,揭示了考虑“空间效应”和支护时机时硐室各分区范围的变化规律;锚杆间排距对围岩位移的控制主要体现在残余区;硬化区扩容系数、开挖过程中的“空间效应”和支护时机对控制围岩位移的作用不容忽视。该文成果为深埋软岩硐室开挖与支护设计提供一定的理论依据。  相似文献   

3.
以甘肃北山地下实验室为研究对象,开展了离散裂隙网络-离散元(DFN-DEM)耦合方法在花岗岩地下硐室围岩稳定性分析方面的探索研究。选取地下实验室工程勘察范围内代表性勘察钻孔和地表露头裂隙数据进行统计分析,利用三维离散单元软件3DEC构建离散裂隙网络(DFN)和等效岩体模型,模拟分析了地下实验室-560 m水平试验巷道的硐室的稳定性。结果表明:硐室开挖引起硐室围岩应力重分布,裂隙与硐室开挖面相交部位发生应力集中现象,硐室围岩出现位移变形;在现有条件下,硐室围岩变形量较小,应力集中程度不高,地下硐室稳定性较好。  相似文献   

4.
随着埋深增加,深部工程围岩在开挖后应力重分布形成支撑压力区,破坏后将形成新的破裂面,稳定的支撑压力区即为围岩的松动圈。围岩松动圈范围的确定以及变形破坏机理的研究,关乎围岩变形稳定控制支护的方式方法。利用围岩的平衡方程和泰勒展开方法,得到松动圈的初始半径,并采用Maxwell方程来表征岩体中缺陷应力演化,推导了围岩松动圈发生劈裂破坏的条件。  相似文献   

5.
锚杆注浆联合支护大断面煤仓硐室围岩稳定性研究   总被引:2,自引:1,他引:2  
以土朱矿井煤仓硐室为例,运用松动圈理论和组合拱理论分别计算了硐室围岩稳定性系数,2种理论计算得到硐室围岩稳定性系数均大于1.1,证明了锚杆注浆联合支护设计参数符合硐室围岩安全稳定的要求.运用FLAC4.0数值模拟软件计算分析了大断面硐室围岩的稳定性,建立了无支护、锚杆支护、锚杆注浆联合支护3种模拟方案,分别分析了3种方案时硐室围岩的变形情况,模拟结果显示锚杆注浆联合支护的巷道顶底板和两帮收敛量都较小,底鼓量也较小,能保证该巷道围岩的长期稳定.最后运用工程类比法确定采用锚杆注浆联合支护方案,并通过后期现场观测,证明锚杆注浆联合支护效果良好,能够保证硐室围岩的长期安全稳定.图4,参7.  相似文献   

6.
为了分析金川深部巷道底臌形成过程以及支护对巷道稳定性的影响,运用声波单孔探测法,使用水做耦合剂,对巷道围岩松动圈进行测试。根据测出的深度-孔深曲线和各测孔漏水情况得出3个断面松动圈厚度以及围岩破碎程度。研究结果表明:初次支护设计对围岩松动圈有重要影响,巷道开挖支护一段时间后,松动圈厚度趋于稳定,返修后巷道围岩松动圈厚度不会有很大变化。巷道顶板和底角的围岩松动圈比两帮的厚,特别是底角处的松动圈较厚,在巷道两帮传递的集中应力的作用下,易发生破碎与移动,对于巷道围岩稳定性也有较大的影响。因此,使用锚索或者长度大于2.5 m的锚杆支护顶底角,对于延长巷道使用期限、减少返修周期具有重要意义。  相似文献   

7.
锚杆注浆联合支护大断面煤仓硐室围岩变形分析   总被引:1,自引:0,他引:1  
以土朱矿井煤仓硐室为例,运用损伤力学分析了巷道开挖效应;利用FLAC4.0数值模拟软件计算分析了大断面硐室围岩的稳定性,并建立了无支护和锚杆注浆联合支护两种模拟方案,两种方案模拟结果的对比显示锚注联合支护形式能够有效地加固围岩和控制围岩变形;通过工程类比法和FLAC数值模拟相结合对大断面硐室锚杆注浆联合支护方案进行了设计,确定了锚注联合支护参数,通过后期的现场观测,说明了锚杆注浆联合支护在大断面煤仓硐室支护中效果良好,能够保证硐室围岩的长期安全稳定.  相似文献   

8.
 为安全高效回采冬瓜山铜矿盘区隔离矿柱,在充分利用矿山已有巷道工程的前提下,仍需在盘区采场充填体下开挖新的出矿巷道.基于松动圈理论,利用单孔声波检测仪测量巷道围岩松动圈范围,为确定充填体下开挖巷道的顶板安全厚度、选择巷道支护方式提供依据.现场测试表明,冬瓜山铜矿-760和-790m巷道的围岩松动圈为0.8~1.3m.根据圣维南局部效应原理,结合工程技术人员的实际经验,最终确定采场充填体下新开挖出矿巷道的顶板安全厚度为4m.此外,通过松动圈测定和工程借鉴,确定新开挖巷道支护采用喷锚支护,局部破碎地方采用喷锚网联合支护,经理论计算和现场实测,总结出新开挖出矿巷道顶板锚杆长度选取2.2m、锚杆网度选取1.0m×1.0m时,能够安全经济地控制巷道松动圈.  相似文献   

9.
注浆加固与锚杆支护技术相结合,可以提高围岩承载能力,减少巷道变形。确保大硐室开挖中的支护安全、有效。介绍了注浆加固在破碎区开挖大硐室中的应用及取得的效果。  相似文献   

10.
硐室形变围岩压力弹塑性分析的统一解   总被引:6,自引:0,他引:6  
基于统一强度理论 ,推导得出了硐室形变围岩压力的统一解 ,可以广泛适用于岩土类材料 ,修正的芬纳公式为其特例。当不同程度地考虑σ2 的影响时 ,可得出一系列的围岩压力和塑性松动圈半径 ,根据岩石力学性质试验结果和实际工程情况 ,合理确定统一强度理论参数 b,可正确地确定围岩压力的大小 ,从而合理地选择支护结构。由计算结果得出 ,取不同的 b值对塑性圈半径影响不大 ,但对围岩压力影响较大。  相似文献   

11.
李昂  关祥勇  刘子平 《科技信息》2008,(32):366-366
在强力胶带运输机正常生产的情况下,在其下方立交位置施工涨紧硐室及立井,为防止爆破冲击对机电设备和皮带的影响,采用地锚加大板料保护法,分段反井施工,并利用围岩松动圈理论合理支护,在不影响强力胶带正常运输的情况下,安全的施工该硐室及立井。  相似文献   

12.
围岩松动圈范围是评价围岩稳定性的重要参数之一,本文结合高地应力软弱围岩武都隧道工程实例,采用声波法对隧道围岩松动圈进行了测试分析,获得了隧道掌子面附件断面松动圈的分布范围;基于测试结果,为围岩松动圈支护参数的确定提供了数据和指导。  相似文献   

13.
针对不同强度准则计算松动圈的适用性问题,基于围岩弹塑性理论,采用统一强度理论推导了巷道围岩松动圈理论计算公式。依托实际工程,采用Mohr-Coulomb准则、Hoek-Brown准则和统一强度理论对巷道围岩松动圈厚度进行理论计算。将理论计算结果和现场测试结果进行对比,发现基于Mohr-Coulomb准则计算松动圈厚度大于现场测试结果,基于Hoek-Brown准则计算松动圈厚度小于现场测试结果,同时二者的理论计算厚度与现场测试结果相差较大。而统一强度理论计算松动圈厚度和现场测试结果比较接近。因此,统一强度理论适用于巷道围岩松动圈理论计算。  相似文献   

14.
为解决新河煤矿-980m水平硐室群在掘进及支护过程中的大变形问题,首先通过理论分析,研究了相邻硐室不同开挖顺序对围岩破坏的影响;其次运用FLAC3D数值模拟软件对相邻硐室群的不同开挖顺序进行模拟,计算得到围岩塑性区最小破坏体积VP,并得出最优施工方案,在上述研究基础上对已开挖硐室群进行支护设计,提出泵房主体及壁龛前期采用锚网、注浆锚索、喷浆,后期采用钢筋混凝土砌碹的联合支护方式,并对实施该支护方案的硐室群进行支护前后的数值模拟计算,计算结果表明,水泵房主体硐室顶板最大下沉量由927mm下降至30mm,底臌量由1 036mm下降至6mm,主体泵房左帮移近量由1 010mm下降至10.9mm,壁龛掌面移近量由700mm下降至9.9mm,围岩变形得到有效控制.顶底板位移现场监测结果表明,监测断面两帮最大移近量为8mm,顶底板最大移近量为15mm,巷道支护效果良好,能有效控制围岩变形.  相似文献   

15.
柔性锚杆在高应力硐室中的应用   总被引:1,自引:1,他引:0  
传统刚性锚杆支护作为地下硐室支护被广为采用,但对于高应力,围岩变形大的硐室,传统刚性锚杆的使用却受到极大的限制,针对地应力大的硐室,本在传统刚性锚杆支护原理基础上,提出了柔性锚杆的总结构和原理,以及工程中常见的几种类型。  相似文献   

16.
竖向排列地下硐室群动力稳定性的数值模拟分析   总被引:4,自引:3,他引:4  
以竖向排列地下硐室群为研究对象,将爆破地震波简化为谐波形式,运用三维有限差分程序FLAC^10研究不同速度、不同动荷载频率以及不同硐室间距条件下硐室群隔板位移和围岩塑性区面积的变化规律,以及上方硐室跨度变化对隔板位移和下方硐室稳定性的影响,通过工程实例分析爆破震动作用下地下硐室群的稳定性。研究结果表明:动荷栽速度对地下硐室群稳定性的影响最明显,隔板位移和围岩塑性区面积随爆破地震波速度增大而增大;随着爆破地震波频率的增大,隔板位移先增大后减小;随着硐室间距的增加,隔板位移减小,有利于地下硐室群的稳定;随着上方硐室跨度增加,隔板位移增大;地下硐室群围岩中出现多处应力集中,但最大拉应力小于岩体的抗拉强度,不会出现拉裂破坏;分析结果与实际观测结果相吻合。  相似文献   

17.
金川Ⅲ矿区硐室围岩蠕变特性与支护时机   总被引:2,自引:0,他引:2  
针对金川Ⅲ矿区硐室围岩蠕变控制问题,通过对破碎工程系统中大件道工程围岩变形的监测发现有明显的流变特性,即包括急剧变形、减速变形以及变形趋于稳定的三个阶段.分析了围岩应力环境、矿物成分和地下水对硐室围岩变形的影响,提出了适合高地应力构造影响带围岩流变模型,并对流变参数作了分析.根据金川岩体流变过程是由弹性、塑性、黏弹性和黏塑性等多种变形共存的一个复杂过程,呈现出高度的非线性的特征,从理论上分析二次支护的最佳时机,即金川Ⅲ矿区深部岩体在开挖并进行一次支护后的第3周内可作为最佳的二次支护时机,允许变形量应控制在50~150 mm.  相似文献   

18.
为了获得更合理的深埋地下硐室破坏模式和更精确的深埋地下硐室围岩压力,在分析研究已有深埋硐室破坏模式的基础上,构建"楔形塌落体+转动圆弧体"的深埋硐室破坏模式。运用非线性Mohr-Coulomb破坏准则(即M-C破坏准则)下的极限分析解析法,推导得到"楔形塌落体+转动圆弧体"破坏模式的围岩压力表达式。通过数值模拟、理论验证和工程实践对比,证明改进后硐室破坏模式的合理性和采用极限分析非线性理论计算围岩压力的可靠性。根据该硐室破坏模式,研究各参数对围岩压力的影响。研究结果表明:围岩压力随着非线性系数的增大而增大,随着侧压系数和内摩擦角的增大而逐渐减小;非线性系数和侧压系数对围岩压力的影响明显大于内摩擦角对围岩压力的影响;通过减小非线性系数、增大侧压系数和选择内摩擦角较大的围岩进行开挖可有效提高围岩稳定性。  相似文献   

19.
围岩压力的确定一直是隧道工程结构设计中的重点,而黄土隧道的工程特性与其他岩质隧道有着明显的区别,尤其是深埋黄土隧道的围岩压力计算。通过对深埋黄土隧道开挖后的围岩应力状态进行分析,明确了松动圈的定义,推导了松动圈的表达式,提出了基于松动圈理论的深埋黄土隧道围岩压力计算方法,并基于现场试验实测数据与既有计算方法进行了对比分析,以验证该方法的适用性。研究结果表明:松动圈为塑性区的内圈,是塑性区内切向应力小于初始地应力的部分;黄土隧道的松动圈较普通巷道和岩石隧道的松动范围大得多,更易受隧道开挖影响;基于松动圈理论的围岩压力计算方法与其他计算方法相比较,计算结果与实测值接近且存在一定的安全储备,使用该方法对深埋黄土隧道围岩压力进行计算是可行的,基于松动圈理论的围岩压力计算方法更适用于深埋黄土隧道这种有一定自稳能力的软弱土质围岩隧道。  相似文献   

20.
巷道围岩松动圈的大小是评定围岩稳定性和确定锚杆长度的重要依据,对双柳煤矿3306工作面回采巷道进行围岩松动圈测试,得出了该工作面松动圈范围。根据松动圈测试结果、巷道围岩松动圈支护理论及我国缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案,最终确定了合理的巷道支护方式及参数,对类似地质条件下的巷道支护设计具有借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号