首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ICOS co-stimulatory receptor is essential for T-cell activation and function   总被引:61,自引:0,他引:61  
T-lymphocyte activation and immune function are regulated by co-stimulatory molecules. CD28, a receptor for B7 gene products, has a chief role in initiating T-cell immune responses. CTLA4, which binds B7 with a higher affinity, is induced after T-cell activation and is involved in downregulating T-cell responses. The inducible co-stimulatory molecule (ICOS), a third member of the CD28/CTLA4 family, is expressed on activated T cells. Its ligand B7H/B7RP-1 is expressed on B cells and in non-immune tissues after injection of lipopolysaccharide into animals. To understand the role of ICOS in T-cell activation and function, we generated and analysed ICOS-deficient mice. Here we show that T-cell activation and proliferation are defective in the absence of ICOS. In addition, ICOS -/- T cells fail to produce interleukin-4 when differentiated in vitro or when primed in vivo. ICOS is required for humoral immune responses after immunization with several antigens. ICOS-/- mice showed greatly enhanced susceptibility to experimental autoimmune encephalomyelitis, indicating that ICOS has a protective role in inflammatory autoimmune diseases.  相似文献   

2.
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods-recursive partitioning and regression-to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; P(combined) = 2.01 x 10(-19) and 2.35 x 10(-13), respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes.  相似文献   

3.
E P Reich  R S Sherwin  O Kanagawa  C A Janeway 《Nature》1989,341(6240):326-328
Insulin-dependent diabetes mellitus is widely believed to be an autoimmune disease. Recent onset diabetics show destruction of insulin-secreting pancreatic beta-cells associated with a lymphocytic infiltrate (insulitis), with autoantibodies to beta-cells being found even before the onset of symptoms. Susceptibility to the disease is strongly influenced by major histocompatibility complex (MHC) class II polymorphism in both man and experimental animal models such as the non-obese diabetic (NOD) mouse. As MHC class II molecules are usually associated with dominant immune responsiveness, it was surprising that introduction of a transgenic class II molecule, I-E, protected NOD mice from insulitis and diabetes. This could be explained by a change either in the target tissue or in the T cells presumed to be involved in beta-cell destruction. Recently, several studies have shown that I-E molecules are associated with ontogenetic deletion of T cells bearing antigen/MHC receptors encoded in part by certain T-cell receptor V beta gene segments. To determine the mechanism of the protective effect of I-E, we have produced cloned CD4+ and CD8+ T-cell lines from islets of recently diabetic NOD mice. These cloned lines are islet-specific and pathogenic in both I-E- and I-E+ mice. Both CD4+ and CD8+ cloned T cells bear receptors encoded by a V beta 5 gene segment, known to be deleted during development in I-E expressing mice. Our data provide, therefore, an explanation for the puzzling effect of I-E on susceptibility to diabetes in NOD mice.  相似文献   

4.
Type 1 diabetes is the result of a selective destruction of insulin-producing β cells in pancreatic islets by autoreactive T cells. Depletion of autoreactive T cell through apoptosis may be a potential strategy for the prevention of autoimmune diabetes. Simultaneous stimulation of Fas-mediated pathway and blockade of costimulation by a CTLA4-FasL fusion protein has been reported to lead to substantial inhibition of mixed lymphocyte reaction and enhanced in vitro apoptosis of peripheral lymphocytes. To test the feasibility of CTLA4-FasL-based gene therapy to prevent autoimmune diabetes, we developed recombinant adenovirus containing human CTLA4-FasL gene (AdCTLA4-FasL). A single injection of 2×10~8 plaque forming units (PFU) of AdCTLA4-FasL via tail vein dramatically reduced the incidence of autoimmune diabetes in mice induced by multiple low doses of streptozotocin. AdCTLA4-FasL administration maintained islet insulin content, significantly increased apoptosis of pancreatic lymphocytes, quantitatively  相似文献   

5.
A class of alleles at the VNTR (variable number of tandem repeat) locus in the 5' region of the insulin gene (INS) on chromosome 11p is associated with increased risk of insulin-dependent diabetes mellitus (IDDM), but family studies have failed to demonstrate linkage. INS is thought to contribute to IDDM susceptibility but this view has been difficult to reconcile with the lack of linkage evidence. We thus investigated polymorphisms of INS and neighbouring loci in random diabetics, IDDM multiplex families and controls. HLA-DR4-positive diabetics showed an increased risk associated with common variants at polymorphic sites in a 19-kilobase segment spanned by the 5' INS VNTR and the third intron of the gene for insulin-like growth factor II (IGF2). As INS is the major candidate gene from this region, diabetic and control sequence were compared to identify all INS polymorphisms that could contribute to disease susceptibility. In multiplex families the IDDM-associated alleles were transmitted preferentially to HLA-DR4-positive diabetic offspring from heterozygous parents. The effect was strongest in paternal meioses, suggesting a possible role for maternal imprinting. Our results strongly support the existence of a gene or genes affecting HLA-DR4 IDDM susceptibility which is located in a 19-kilobase region of INS-IGF2. Our results also suggest new ways to map susceptibility loci in other common diseases.  相似文献   

6.
A fundamental question about the pathogenesis of spontaneous autoimmune diabetes is whether there are primary autoantigens. For type 1 diabetes it is clear that multiple islet molecules are the target of autoimmunity in man and animal models. It is not clear whether any of the target molecules are essential for the destruction of islet beta cells. Here we show that the proinsulin/insulin molecules have a sequence that is a primary target of the autoimmunity that causes diabetes of the non-obese diabetic (NOD) mouse. We created insulin 1 and insulin 2 gene knockouts combined with a mutated proinsulin transgene (in which residue 16 on the B chain was changed to alanine) in NOD mice. This mutation abrogated the T-cell stimulation of a series of the major insulin autoreactive NOD T-cell clones. Female mice with only the altered insulin did not develop insulin autoantibodies, insulitis or autoimmune diabetes, in contrast with mice containing at least one copy of the native insulin gene. We suggest that proinsulin is a primary autoantigen of the NOD mouse, and speculate that organ-restricted autoimmune disorders with marked major histocompatibility complex (MHC) restriction of disease are likely to have specific primary autoantigens.  相似文献   

7.
In autoimmune type 1 diabetes, pathogenic T lymphocytes are associated with the specific destruction of insulin-producing beta-islet cells. Identification of the autoantigens involved in triggering this process is a central question. Here we examined T cells from pancreatic draining lymph nodes, the site of islet-cell-specific self-antigen presentation. We cloned single T cells in a non-biased manner from pancreatic draining lymph nodes of subjects with type 1 diabetes and from non-diabetic controls. A high degree of T-cell clonal expansion was observed in pancreatic lymph nodes from long-term diabetic patients but not from control subjects. The oligoclonally expanded T cells from diabetic subjects with DR4, a susceptibility allele for type 1 diabetes, recognized the insulin A 1-15 epitope restricted by DR4. These results identify insulin-reactive, clonally expanded T cells from the site of autoinflammatory drainage in long-term type 1 diabetics, indicating that insulin may indeed be the target antigen causing autoimmune diabetes.  相似文献   

8.
Prevention of diabetes in non-obese diabetic I-Ak transgenic mice   总被引:6,自引:0,他引:6  
The non-obese diabetic (NOD) mouse develops insulin-dependent diabetes mellitus (IDDM) with mononuclear cell infiltration of the islets of Langerhans and selective destruction of the insulin-producing beta-cells, as in humans. Most infiltrating cells are T lymphocytes, and most of these carry the CD4 antigen. Adoptive transfer of T cells from diabetic NOD mice into irradiated NOD or athymic nude NOD mice induces diabetes. Susceptibility to IDDM in NOD mice is polygenic, with one gene linked to the major histocompatibility complex class II locus, which in NOD mice expresses a unique I-A molecule but no I-E. Speculation exists as to the role of the I-A molecule in the diabetes susceptibility of NOD mice, especially regarding the significance of specific unique residues. To examine the role of the NOD I-A molecule in IDDM pathogenesis, we made NOD/Lt mice transgenic for I-Ak by microinjecting I-Ak alpha- and beta-genes into fertilized NOD/Lt eggs. Insulitis was markedly reduced and diabetes prevented in NOD/Lt mice expressing I-Ak.  相似文献   

9.
INSULIN-dependent (type I) diabetes mellitus (IDDM) follows an autoimmune destruction of the insulin-producing beta-cells of the pancreas. Family and population studies indicate that predisposition is probably polygenic. At least one susceptibility gene lies within the major histocompatibility complex and is closely linked to the genes encoding the class II antigens, HLA-DR and HLA-DQ (refs 3, 4). Fine mapping of susceptibility genes by linkage analysis in families is not feasible because of infrequent recombination (linkage disequilibrium) between the DR and DQ genes. Recombination events in the past, however, have occurred and generated distinct DR-DQ haplotypes, whose frequencies vary between races. DNA sequencing and oligonucleotide dot-blot analysis of class II genes from two race-specific haplotypes indicate that susceptibility to IDDM is closely linked to the DQA1 locus and suggest that both the DQB1 (ref. 7) and DQA1 genes contribute to disease predisposition.  相似文献   

10.
Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.  相似文献   

11.
R Aharoni  D Teitelbaum  R Arnon  J Puri 《Nature》1991,351(6322):147-150
Autoimmune diseases occur when T lymphocytes become activated on recognizing self antigen linked to the autologous class II molecule of the major histocompatibility complex (MHC). The resulting complex of antigen MHC T-cell receptor could be a target for treatment of autoimmune diseases. Studies in which each component is blocked separately might be limited by interference in non-relevant immune responses that either use the same set of T-cell-receptor V gene segments or are linked to the same MHC. We report here an attack by a specific antibody on the unique antigenic site formed by the binding of two components of the trimolecular complex, the autoantigen bound to the self MHC. We tested its effect in experimental allergic encephalomyelitis, an acute neurological autoimmune disease which is widely regarded as a model for autoimmune disorders and which is mediated by CD4+ T cells recognizing myelin basic protein (BP), or its peptides, in association with self Ia. We made monoclonal antibodies which bound only the complex of BP and I-As. These antibodies blocked the proliferative response in vitro to the encephalitogenic determinant of BP and reduced the response to intact BP, without affecting the response to a nonrelevant antigen-purified protein derivative of tuberculin presented on syngeneic macrophages. They also inhibited experimental allergic encephalomyelitis in H-2s mice. Hence, antibodies directed specifically to the autoantigen-Ia complex, may offer a highly selective and effective treatment in autoimmune diseases.  相似文献   

12.
Type 1 diabetes (T1D) in children results from autoimmune destruction of pancreatic beta cells, leading to insufficient production of insulin. A number of genetic determinants of T1D have already been established through candidate gene studies, primarily within the major histocompatibility complex but also within other loci. To identify new genetic factors that increase the risk of T1D, we performed a genome-wide association study in a large paediatric cohort of European descent. In addition to confirming previously identified loci, we found that T1D was significantly associated with variation within a 233-kb linkage disequilibrium block on chromosome 16p13. This region contains KIAA0350, the gene product of which is predicted to be a sugar-binding, C-type lectin. Three common non-coding variants of the gene (rs2903692, rs725613 and rs17673553) in strong linkage disequilibrium reached genome-wide significance for association with T1D. A subsequent transmission disequilibrium test replication study in an independent cohort confirmed the association. These results indicate that KIAA0350 might be involved in the pathogenesis of T1D and demonstrate the utility of the genome-wide association approach in the identification of previously unsuspected genetic determinants of complex traits.  相似文献   

13.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.  相似文献   

14.
The identification of common variants that contribute to the genesis of human inherited disorders remains a significant challenge. Hirschsprung disease (HSCR) is a multifactorial, non-mendelian disorder in which rare high-penetrance coding sequence mutations in the receptor tyrosine kinase RET contribute to risk in combination with mutations at other genes. We have used family-based association studies to identify a disease interval, and integrated this with comparative and functional genomic analysis to prioritize conserved and functional elements within which mutations can be sought. We now show that a common non-coding RET variant within a conserved enhancer-like sequence in intron 1 is significantly associated with HSCR susceptibility and makes a 20-fold greater contribution to risk than rare alleles do. This mutation reduces in vitro enhancer activity markedly, has low penetrance, has different genetic effects in males and females, and explains several features of the complex inheritance pattern of HSCR. Thus, common low-penetrance variants, identified by association studies, can underlie both common and rare diseases.  相似文献   

15.
Human type 1 (insulin-dependent) diabetes is a common auto-immune disease of the insulin-producing beta cells of the pancreas which is caused by both genetic and environmental factors. Several features of the genetics and immunopathology of diabetes in nonobese diabetic (NOD) mice are shared with the human disease. Of the three diabetes-susceptibility genes, Idd-1 -3 and -4 that have been mapped in mice to date, only in the case of Idd-1 is there any evidence for the identity of the gene product: allelic variation within the murine immune response I-A beta gene and its human homologue HLA-DQB1 correlates with susceptibility, implying that I-A beta is a component of Idd-1. We report here the mapping of Idd-5 to the proximal region of mouse chromosome 1. This region contains at least two candidate susceptibility genes, the interleukin-1 receptor gene and Lsh/Ity/Bcg, which encodes resistance to bacterial and parasitic infections and affects the function of macrophages.  相似文献   

16.
A Palsdottir  S J Cross  J H Edwards  M C Carroll 《Nature》1983,306(5943):615-616
The fourth component of complement (C4) in man, is coded for by two separate but closely linked loci (C4A and C4B) within the major histocompatibility region (MHC), on the short arm of chromosome 6. Like class I and II loci of this region, the C4 genes are highly polymorphic with more than 30 alleles, including null alleles, assigned to the two loci. This extensive polymorphism, based mainly on electrophoretic mobility, provides a useful marker for studies of disease susceptibility. Several disorders, including systemic lupus erythematosus and type I diabetes, show associations with C4 phenotypes. We have used the technique of Southern with a C4 specific probe to examine the genomic DNA of individuals typed for C4 by protein electrophoresis. We have identified 10.7 and 3.8 kilobase (kb) BglII restriction fragments in each of 9 unrelated individuals with a C4A6 allele, and in none of 22 unrelated individuals in whom this allele was not expressed. This clear correlation of restriction fragment length polymorphism with C4 phenotype provides a precise basis for analysis of C4 polymorphism. It is likely to be of value in clinical investigations of autoimmune disease.  相似文献   

17.
Rheumatoid arthritis (RA), which afflicts about 1% of the world population, is a chronic systemic inflammatory disease of unknown aetiology that primarily affects the synovial membranes of multiple joints. Although CD4(+) T cells seem to be the prime mediators of RA, it remains unclear how arthritogenic CD4(+) T cells are generated and activated. Given that highly self-reactive T-cell clones are deleted during normal T-cell development in the thymus, abnormality in T-cell selection has been suspected as one cause of autoimmune disease. Here we show that a spontaneous point mutation of the gene encoding an SH2 domain of ZAP-70, a key signal transduction molecule in T cells, causes chronic autoimmune arthritis in mice that resembles human RA in many aspects. Altered signal transduction from T-cell antigen receptor through the aberrant ZAP-70 changes the thresholds of T cells to thymic selection, leading to the positive selection of otherwise negatively selected autoimmune T cells. Thymic production of arthritogenic T cells due to a genetically determined selection shift of the T-cell repertoire towards high self-reactivity might also be crucial to the development of disease in a subset of patients with RA.  相似文献   

18.
Although there has been much success in identifying genetic variants associated with common diseases using genome-wide association studies (GWAS), it has been difficult to demonstrate which variants are causal and what role they have in disease. Moreover, the modest contribution that these variants make to disease risk has raised questions regarding their medical relevance. Here we have investigated a single nucleotide polymorphism (SNP) in the TNFRSF1A gene, that encodes tumour necrosis factor receptor 1 (TNFR1), which was discovered through GWAS to be associated with multiple sclerosis (MS), but not with other autoimmune conditions such as rheumatoid arthritis, psoriasis and Crohn’s disease. By analysing MS GWAS data in conjunction with the 1000 Genomes Project data we provide genetic evidence that strongly implicates this SNP, rs1800693, as the causal variant in the TNFRSF1A region. We further substantiate this through functional studies showing that the MS risk allele directs expression of a novel, soluble form of TNFR1 that can block TNF. Importantly, TNF-blocking drugs can promote onset or exacerbation of MS, but they have proven highly efficacious in the treatment of autoimmune diseases for which there is no association with rs1800693. This indicates that the clinical experience with these drugs parallels the disease association of rs1800693, and that the MS-associated TNFR1 variant mimics the effect of TNF-blocking drugs. Hence, our study demonstrates that clinical practice can be informed by comparing GWAS across common autoimmune diseases and by investigating the functional consequences of the disease-associated genetic variation.  相似文献   

19.
J A Todd  J I Bell  H O McDevitt 《Nature》1987,329(6140):599-604
Over half of the inherited predisposition to insulin-dependent diabetes mellitus maps to the region of chromosome 6 that contains the highly polymorphic HLA class II genes which determine immune responsiveness. Analysis of DNA sequences from diabetics indicates that alleles of HLA-DQ beta determine both disease susceptibility and resistance, and that the structure of the DQ molecule, in particular residue 57 of the beta-chain, specifies the autoimmune response against the insulin-producing islet cells.  相似文献   

20.
 FOXP3+CD4+CD25+调节性T 细胞(FOXP3+Tregs)负责正常机体免疫稳态的维持。人类许多重大免疫性疾病均与调节性T 细胞的功能异常相关。叉头状家族转录蛋白FOXP3 是调节性T 细胞中特异性表达的关键转录因子,对调节性T 细胞的发育与功能有着重要作用。近年来的研究表明,FOXP3 蛋白转录调控复合体的装配及其翻译后修饰调节对调节性T 细胞的功能至关重要,相关生理过程受到各种炎症微环境的动态调节。深入研究FOXP3+Tregs 活性调节的分子机制将为攻克人类重大免疫及相关性疾病提供创新性线索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号