首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文证明了两个n维等价线性无关的向量组A(α1,α2,…αm)和β(β1,β2,…,βm)的性质,对A组中的任一向量αj,在β组中至少可以找到一个向量βi替换αj,使α1,…,α-1,β1,αj+1,…,αm与向量组B等价。同时指出了这种替换的条件。  相似文献   

2.
在本文中研究了具有形式:P(f)=W(β_1,β_2…,β_T~′,fα_1,fα_2,…,fα_1)的隆斯基行列式的零点,证明了一个不等式并给出了一些推广,其中f为一超越亚纯函数并且α_i(i=1,2,…,I),β_j(j=1,2,…,I′)为两组线性无关的亚纯函数满足条件: T(r,α_i)=o{T(r,f)},T(r,β_j)=o{T(r,f)}.  相似文献   

3.
Nishishiraho在条件lim之下于C_(2π)空间讨论了算子列{T_n}的饱和现象,文献[2]在条件lim之下于X~(?)_(2π)空间建立了算子列{T_n}的饱和定理。本文是把上述工作扩展到在条件lim(1<α<2)之  相似文献   

4.
考虑线性回归模型y_i=x_i~′β+e_i,i=1,2,…。这里{x_i~′}是已知的P维向量序列,β=(β_1,β_2…β_p)′是未知的P维向量,称为回归系数。{e_i}是随机误差序列。现在我们提供一种方法剔除一些对因变量y影响总和可以忽略的变量,以使建立的模型更加稳定。并在不假定随机误差是独立同分布以较宽松的条件下,给出了这种选择模型方法的强相合性的证明。  相似文献   

5.
设n维欧氏空间E^2中p维与q维线性子流形分别为:σp:α1∧α2∧…∧αk∧(x-x0)=0,σp:β1∧β2∧…∧βq∧(y-y0)=0,向量组{α1,…,αp,β1,…,βq}的一个极大线性无关组为{γ1,γ2,…,γk},证明了σp与σq间的距离平方为α^2(σp,σq)=|δ0|^2-(γ1δ0,…,γkδ0)A^-1(γ1δ0,…,γkδ0)^T,其中δ0=x0-y0,A=(γiγj)^ki.j=1。  相似文献   

6.
证明了线性空间的基的结构定理 :若向量组A :α1,α2 ,… ,αr 是Rn 中的线性无关的向量组 ,向量组B :β1,β2 ,… ,βn 是Rn 的一组基 ,r 相似文献   

7.
本文研究了非线性二阶差分方程~Dirichlet~边值问题 $$ \left\{\begin{array}{ll} \Delta^{2}u(t-1)+\lambda a(t)f(u(t))=0,~~~t\in[1,T]_{Z},\u(0)=u(T+1)=0 \end{array} \right. $$ 正解的存在性,~其中~$\Delta u(t-1)=u(t)-u(t-1),T>2$~是一个整数,~$\lambda$~是一个正参数,~$f:[0,\infty)\rightarrow R$~连续且~$f(0)>0$,~权函数~$a:[1,T]_{Z}\rightarrow R$~允许变号.~本文主要结果的证明基于~Leray-Schauder~不动点定理.\\  相似文献   

8.
渐近非扩张映象的粘性逼近序列的强收敛定理   总被引:1,自引:0,他引:1  
假设E是具有一致Gateaux可微范数的实Banach空间,D是E的非空闭凸子集,f∶D→D是压缩映象,T∶D→D是渐近非扩张映象。设粘性逼近序列{xn}定义为xn 1=αnf(yn) (1-αn)Tnyn,yn=βnxn (1-βn)Tnxn(n≥0),其中αn∈[0,1],βn∈[0,1]。本文给出了{xn}强收敛于T的不动点的充要条件:若{αn}满足如下条件:limn→∞αn=0,∑∞n=0αn=∞,定义一簇压缩映象Sn∶D→D为Sn(z)=(1-dn)f(z) dnTnz,z∈D,其中dn=ktnn--αα,tn∈(α,1)(n=1,2,…),limn→∞tn=1且k2n-1≤(1-dn)2,n≥n0,设zn∈D是Sn的唯一不动点,即zn=Sn(zn)=(1-dn)f(zn) dnTnzn,n≥1,若limn→∞‖xn-Txn‖=0且{zn}强收敛于z*∈F(T),则{xn}强收敛于z*∈F(T)的充分必要条件是{yn}有界。本文的结果不仅是对Reich公开问题的解答,而且是对Reich[1-2]、Shioji和Takahashi[3]、张石生[4]相应结果的推广。  相似文献   

9.
本文继续作者在文献[1]中的工作,证明具2+δ(0<δ<1)阶原点矩的时变 MAX(q)序列{x_n)的样本均值 N~(1/2)(_N-E_N)渐近正态分布 N(0,ν_2-ν_2-(2q+1)μ~2),其中μ_1=Ex_1,ν_2=E(x_1+x_2+…+x_(q+1))~2,ν_2=E(x_1+x_2+…+x_q)~2,从而,减弱了文献[1]中要求{x_n}具有限三阶原点的限制条件.但其论证方法与文献[1]不相同.  相似文献   

10.
~~的核 Sk( x,y)附加了对称性的要求 .本研究在文 [3]的基础上 ,利用最近 Y.S.Han在文 [2 ]给出的恒等逼近的改进定义给出了 Lipschitz函数类 Lipα的一个新刻画 ,是文 [3]结果的推广 ,其主要结果如下 .定理 设算子列 {Sk}k∈ z[2 ]是齐型空间 ( X,ρ,μ)上的恒等逼近 ,Dk=Sk- Sk-1,f是在任有界集上可积的函数 ,0 <α 相似文献   

11.
本文研究了这样一类函数方程的解其中α_j′=(α_(1j)α_(2j)…α_(pj))t′=(t_1,t_2,…,t_p)f_j 是实变量 t 的复值函数.在f_j 二阶连续可微条件下,此方程的解为f_j(s)=exp{ α_j~s b_j}j=1,2,…其中 r_j 满足α_(mj)α_(lj)λ_j=0 α_jb_j 是常数,由此又可得到满足方程(α_j′t)=(t_j)的至多是二阶多项式。这个结果,深化并推广了 C.G.Khatri 和 C.R.Rao<1><2>及 B.Rama chandran<3>的结果,进而大大简化正态分布刻划定理的证明.  相似文献   

12.
在文献[1]中W.Philipp和W.Stout得到了用正则布朗运动来逼近高氏序列的很好的结果(见[1]中定理5.1)。在该定理的证明中用到了重要引理5.3.1。可是此引理的叙述和证明都是错误的。本文给出此引理的正确叙述及其证明,从而完成了[1]中定理5.1的证明。 [1]中引理5.3.1的叙述和证明中均未提及随机变量序列{X_n}_(n=1)~∞是高氏序列。今举  相似文献   

13.
设试验点集是X={x(t)=kt b:t∈[0,1],|k|≤B_1,|b|≤B_2},其中B_1>0,B_2>0都是已知数,参数空间={θ:θ∈L_2[0,1]}。被观察的随机过程为 Y(x,t)=∫_0~tθ(u)x(u)du N(t),t∈[0,1]其中{N(t),t∈[0,1]}是Weiner过程。本文得到关于线性泛函脉θ_0~*(θ)=∫_0~1θ(u)du的线性估计的最优设计为ξ_0=(x_1,x_2 α, 1-α)其中x_1=-B_1t-B_2,x_2=B_1t B_2,α满足0≤α<1。在得到这个设计时用到了Spruill[2]的一个定理。发现Spruill[2]中(16)式的证明是错的,因为他的叙述“因是对称的且凸的,对充分小的ε>0,(β-ε)θ~*∈”是错的,本文已将这个错误订正。  相似文献   

14.
在条件D(υ_n,u_n),D′ (υ_n,u_n)下,本文将平稳序列的最大值与最小值的渐近独立性推广到有限个不相交区间上,得到定理 {ξ_n}为平稳序列,满足D(υ_n,u_n),D′(υ_n,u_n),u_n=x/a_x+b_x,υ_n=-y/c_n+d_n,a_n>0,c_n>0,J=(α_in,β_in,),i=1,2,…,s,0≤α_1<β_1≤α_2<β_2≤…≤α_n<β_n<∞.如果P(α_n(M_n-b_n)≤x,c_n(M_n-d_n)>-y)→G(x,y)  相似文献   

15.
本文部分回答了R.Holub提出的关于基的Hahn-Banach延拓的两个问题。证明了如果{x_n}_(n=1)~∞是X的基序列,使得[x_n]_(n=1)~∞在X中可补,则存在X上的一个等价范数‖.‖,使得{x_n}_(n=1)~∞的系数泛函{x_n}关于这个等价范数‖.‖具有一个Hahn-Banach延拓{f_n}_(n=1)~∞,且{f_n}_(n=1)~∞仍然是基序列。我们还证明如果{x_n}_(n=1)~∞是X的一个基序列,使得[x_n]_(n=1)~∞在X中可补,且{x_n}_(n=1)~∞不等价于C_o的通常单位基{e_n}_(n=1)~∞,则存在X上一个等价范数‖.‖,使得关于这个等价范数‖.‖,{x_n}_(n=1)~∞的系数泛函{x_n}_(n=1)~*没有一个Hahn-Banach延拓是一个基序列。文中也提出一个猜测。  相似文献   

16.
§1.导言设f(x)~1/2α_0+sum from n=1 to ∞(α_ncos nx++b_nsin nx),帕蒂于[1]中证明了: 定理A.设f(x)是一个周期2π的可积周期函数。{λ_n}是一个凸的数列,它满足∑n~(-1)λ_n<∞。则当x_0是f(x)的勒贝格点时,级数1/2α_0λ_0+sum from n=1 to ∞λ_n(α_ncos nx_0+b_nsin nx_0)是  相似文献   

17.
(n,n)表示在空间自回归模型Zij=αZi-1,j βZi,j-1-αβZi-1,j-1 εij中参数(α,β)的Guass-Newton估计,根据已知的结论:当α=β=1时,{n3/2)((^αn)-α,(^β)n-β)}收敛于二元正态随机向量分布即limn{n3/2(^αn)-α,(^β)n-β))′}(D→)N2(0,Γ),其中Γ=diag(2,2).利用双参数强鞅收敛定理,可以证明,当r<(3)/(2)时,nr(n-α,n-β)→(-0).a.e.  相似文献   

18.
P.Erdos和A M Hobbs在[1]中提出如下的结论:设k≥6,G是2k个顶点的(k-2)次正则的2-连通图,则G是Hamilton图(以下简称为H图)。本文提出比上述结论更为广泛的定理:定理1 设k≥4,G是n个顶点的(k-2)次正则的2-连通图,则除G是peterson图外,G必有个长至少为min{n,2k}的圈。由于:(i)定理1中的k=4时,G是2-正则2-连通图,G是H图,它有个长为n≥min{n,2k}的圈;(ii)定理1中的k≥5且n≤3(k-2)时,根据[2]中的B.Jackson定理知,这时G是H图,它有个长为n≥min{n,2k}的圈。因此,要证明定理1成立,只要证明如下的定理2成立。定理2 设n≥3k-5≥2k,G是n个顶点的(k-2)次正则的2-连通图,则除G是Peterson图外,G必有个长至少为2k的圈。在证明定理2的过程中,本文作下列的假设:  相似文献   

19.
考虑α_1=2~(1/2),α_2=2~(1/2)~(α_1),…,α_(n+1)=2~(1/2)~(α_n),…。这个序列{α_n},容易证明是单调上升的有界序列,因而有极限,记为A。对α_(n+1)=2~(1/2)~(α_n),两边取极限,即有A=2~(1/2)~A,解得A=2。但一般地,如果序列的底数不是2~(1/2),而是x>0时,能否仍有收敛性呢?其极限是什么?下面谈谈这个问题。今讨论x>0时,α_1=x,α_(n+1)=x~(α_n),n=1,2,…,所成的序列{α_n}的极限问题。如果{α_n}收敛,并把这个极限记为A,即limα_n=A。因为α_(n+1)=x~(α_n),两边取极限得  相似文献   

20.
3. Dynamics In the space-time (M, g), it is convenient to introduce an orthonormal basis {E_a}={n, e_μ} which is invariant under the group of isometries. The components of h_(αβ)=e_α·e_β=δ_(αβ) and the metric components are g_(ab)=diag(-1, 1, 1, 1). (3.1) The vectors {e_α} generate a group of transformations in each surface {t=constant}. This is the group reciprocal to the group of isometries. They belong to the same Bianehi type and have the same parameters. The commutators of {e_μ, e_v} [1] are  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号