首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 489 毫秒
1.
对碳钢表面分别进行硅烷和磷化处理,然后用环氧树脂胶粘剂粘接. 研究了不同表面处理的胶接接头力学性能,分析了金属表面处理方法对胶粘剂/金属界面疲劳性能的影响. 在胶接接头施加疲劳载荷,测量了胶接接头疲劳前后的强度-位移曲线. 对比疲劳前后界面剪切强度的变化,采用断裂力学理论分析了界面裂纹扩展过程. 结果表明:表面经硅烷处理后,界面粘接强度最大,耐疲劳性能最好. 胶接接头的失效通常在界面发生,能量可以通过裂尖扩展释放,也可以通过粘接层的塑性变形释放.  相似文献   

2.
磷化处理对粘结固润滑涂层的摩擦性能有很大影响。把氧化锌、磷酸、水按照不同比例配成磷化液,对金属表面进行不同参数(温度、时间)的磷化处理,并在其表面煮涂MoS2利用M-2摩擦磨损实验机测定不同磷化工艺下的MoS2涂层的磨擦学性能,确定了使MoS2固体润滑涂层摩擦性能达到最佳的磷化工艺参数,并讨论了磷化膜表面粗糙度对固体润滑涂层摩擦学性能的影响。  相似文献   

3.
表面磷化处理对固体润滑涂层性能的影响   总被引:1,自引:0,他引:1  
磷化处理对粘结固润滑涂层的摩擦性能有很大影响。把氧化锌、磷酸、水按照不同比例配成磷化液,对金属表面进行不同参数(温度、时间)的磷化处理,并在其表面煮涂MoS2利用M-2摩擦磨损实验机测定不同磷化工工艺下的MoS2涂层的磨擦学性能,确定了使MoS2固体润滑涂层摩擦性能达到最佳的磷化工艺参数,并讨论了磷化膜表面粗糙度对固体润滑涂层摩擦学性能的影响。  相似文献   

4.
以金属作为基底,环氧树脂作为涂层材料,采用电化学阻抗谱技术研究表面未经处理、经硅烷处理和经磷化处理试样的环氧涂层酎蚀性能。有机涂层试样做为工作电极,浸泡在3.5%的NaCl水溶液中,测量其交流阻抗谱。结果表明:金属表面经硅烷处理后,金属/涂层的酎蚀性优于未经表面处理和经磷化处理的试样,硅烷处理层能很好地保护金属基底。  相似文献   

5.
为探明碳纤维增强复合材料(CFRP)-混凝土界面的抗疲劳性能,以碳纤维薄板(CFL)与混凝土的粘结界面作研究对象,设计了改进的双剪疲劳试件,在循环荷载下对CFL-混凝土界面的疲劳性能进行了实验研究;给出了CFL-混凝土界面的相对滑移演化曲线(相对滑移-疲劳寿命实验曲线),分析了界面的应变及其粘结滑移规律.实验结果表明:在疲劳荷载作用下,CFL上的应变演化主要由加载初期快速传力阶段、界面稳定传力阶段、界面失稳传力阶段构成,其中界面稳定传力阶段约占其疲劳寿命的95%左右;试件相对滑移的演化也分为初期快速增长、稳定增长、失稳增长3个阶段.在稳定增长阶段,试件的相对滑移与疲劳寿命之间呈近似的线性关系.最后,提出了基于刚度系数的CFL-混凝土界面的疲劳损伤模型.利用该模型,可较方便地推定CFL-混凝土的界面在疲劳过程中的损伤演化规律.  相似文献   

6.
界面过渡区微力学性质对高周疲劳性能的影响   总被引:2,自引:0,他引:2  
为了解界面过渡区性质对混凝土高周疲劳性能的影响,采用纳米压痕技术测试了矿渣取代水泥的质量分数分别为0%、30%、50%、80%的混凝土中实际界面过渡区及邻近区域的压痕硬度分布,并测试相应配合比混凝土在不同应力水平下的抗弯疲劳寿命.试验结果显示:随矿渣取代水泥质量分数的增加,基体与界面过渡区之间压痕硬度的差异减少;当应力水平低于0.85时,混凝土的疲劳寿命对数值随基体压痕硬度与界面过渡区压痕硬度的比值的降低而增大;基体与界面过渡区间压痕硬度差异的减少,相对提高界面过渡区抑制疲劳损伤的能力,从而改善混凝土高周疲劳性能.  相似文献   

7.
对以35#钢为基体、以钴基自熔性粉末合金为喷涂材科的试样进行3种不同方式的重熔处理,通过弯扭疲劳试验对不同重熔方式下的试样进行疲劳性能研究,用扫描电子显微镜对不同重熔试样的显微组织进行观察,测定各试样的表面硬度.发现经不同重熔处理后涂层材料在界面的扩散程度不同、界面结合强度不同,从而使其疲劳性能明显不同.说明热喷涂构件...  相似文献   

8.
ZL型锌系磷化处理剂由脱脂剂、表面调整剂、磷化剂和促进剂组成,可用于金属表面处理。  相似文献   

9.
为探明栓钉间距对钢-UHPC轻型组合桥面结构受力性能的影响规律,完成了3个钢-UHPC组合梁试件变幅疲劳试验,主要试验变量为栓钉间距(100 mm、150 mm、300 mm).在疲劳试验中,重点考察了栓钉间距对轻型组合桥面结构疲劳性能的影响,并关注了栓钉焊趾处钢面板受拉-短栓钉受剪耦合作用下的疲劳性能;而在疲劳后的剩余承载力试验中,探明了栓钉间距对疲劳后UHPC裂缝发展规律及抗弯承载力的影响.疲劳试验结果表明,当栓钉间距为300 mm时,单位荷载下的钢-UHPC界面滑移明显高于其他两个试件,但在疲劳加载过程中,界面滑移增长并不明显;对于U肋受压区底板应变,当栓钉间距为100 mm和150 mm时,整个疲劳试验过程无明显变化,而当栓钉间距为300 mm时,应变呈现微小的增大趋势;为分析试件中栓钉根部的钢面板拉-剪耦合疲劳受力状态,基于《公路钢混组合桥梁设计与施工规范》(JTG/T D64-01—2015)中的计算方法进行了分析,结果表明,该方法能够获得偏保守的计算结果.此外,疲劳后的剩余承载力试验表明,栓钉间距越小,试件的塑性变形能力越强,截面的抗弯承载力相应提高.分别按弹塑性理论和塑性理论计算了试件的剩余承载力,发现试件虽然经历了疲劳加载,但测承载力仍大于计算承载力,且基于塑性理论的计算结果更接近实测结果.  相似文献   

10.
钛合金焊缝金属表面疲劳短裂纹的分形研究   总被引:1,自引:0,他引:1  
采用覆型技术,对TC2钛合金焊缝金属表面疲劳短裂纹群体演化行为进行了实验研究,并应用分形理论对实验观测结果进行了分析·结果表明,钛合金焊缝金属表面群体疲劳短裂纹演化行为具有分形特征;随着疲劳进程中循环次数的不断增加,分形维数也随之增大,对应着材料的损伤在不断加剧;分形维数可以作为一个损伤变量,更好地描述材料的疲劳损伤及演化·  相似文献   

11.
金属表面预处理对环氧树脂粘结剂粘结强度的影响   总被引:1,自引:0,他引:1  
利用拉伸剪切实验系统地研究了砂纸打磨、喷砂、酸洗和磷化四种表面处理方法对粘结剂粘结强度的影响,并结合扫描电镜(SEM)、表面粗糙度测试仪对金属表面形貌的研究,结合能谱测定拉剪试样破坏面的成分数据,详细分析了不同表面处理方法影响界面粘结强度的作用机理。结果表明,各种表面处理方法均可改变金属表面形态,从而有效提高界面粘结强度,为进一步提高粘结剂/金属界面结合强度打下一定的基础。  相似文献   

12.
磷化技术是当前应用较为广泛的金属表面处理技术.综述了磷化技术的发展过程及发展趋势.  相似文献   

13.
本文研究了某型飞机所使用的5A02铝合金焊接头的疲劳性能。试验研究了该材料的原始焊接接头与一次补焊接头的疲劳性能,通过疲劳试验及疲劳断口形貌分析等手段对焊接接头疲劳性能进行了研究。试验结果表明,补焊会造成焊缝附近区域材料晶粒粗大,并且补焊后,焊接接头的中值疲劳强度下降。  相似文献   

14.
为研究异种材料在不同连接方式下的失效特点并促进胶铆接头在工程中的应用普及,以碳纤维/铝合金单搭接接头为研究对象,对胶接、铆接和胶铆混合连接接头的静态拉伸力学性能开展了试验研究。以胶黏剂材料和铆钉材料为研究变量,讨论了单搭接胶接接头和铆接接头的拉伸力学行为,并从中分别选择了两种胶黏剂和铆钉材料进行组合,重点研究了胶铆接头的交互作用,同时也探讨了铆接方向对接头的影响。研究结果表明,从载荷-位移曲线上看,胶接接头呈现脆性的断裂特点,铆接接头呈现韧性的断裂特点,胶铆接头综合了胶接和铆接的断裂特点,且胶黏剂先断裂失效。另外,铆接方向对铆接和胶铆接头的力学性能有重要影响;当铆钉从碳板侧插入时,其力学性能会优于铆钉从铝板侧插入制备的连接接头。强胶弱铆组合制备的胶铆接头表现出最强的正交互作用,因此其材料的利用率最高。该研究为工程实际中复合材料与金属材料间的连接提供了设计依据和指导方法。  相似文献   

15.
本文采用等离子体处理,对涤纶纤维表面进行改性,以提高纤维的浸润性和粘结性。文中运用接触角测量反映纤维经处理后的表面能变化,并用独特设计的制样和测试方法探讨涤纶处理前后的粘结效果。实验结果表明,该测试方法简便可行且定量准确,能较好地反映纤维的粘结效果。涤纶纤维经等离子体处理后,其粘结性能有较大的提高。  相似文献   

16.
对原子力显微镜(AFM)探针测出的一条理想的力位移曲线进行了分析,推导出了根据实测的力位移曲线计算粘附力的公式。对表面分子沉积膜生长前后的石英岩和扫描探针之间的粘附力进行了实验研究,结果发现这种沉积膜可以降低石英岩表面的粘附力  相似文献   

17.
胶接、胶焊与点焊接头剪切拉伸疲劳行为   总被引:3,自引:0,他引:3  
通过剪切拉伸疲劳试验测定车用结构胶接接头、胶焊接头和点焊接头在不同应力水平下的疲劳寿命.基于载荷-寿命曲线在单对数坐标下为指数曲线段这一假设,利用疲劳试验数据拟合出载荷-寿命曲线,以此表征三种接头的疲劳性能.同时,对胶接接头、胶焊接头和点焊接头的疲劳行为进行对比分析.研究表明:三种连接方式的疲劳试验数据具有较好的规律性;拟合结果证实了三种接头载荷-寿命曲线在单对数坐标下为指数曲线段这一假设的正确性;胶接接头的疲劳强度最高,而点焊接头最低;胶焊接头的疲劳断裂行为比胶接接头更为安全;通过胶焊工艺可以有效提高车身接头的疲劳寿命等.研究结论为车用结构胶胶接技术的应用提供了参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号