首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对于任意给定的正整数k≥1,环R上的元x,y的k-Jordan乘积定义为{x,y}_k={{x,y}_(k-1),y}_1,其中{x,y}_0=x,{x,y}_1=xy+yx.假设R是含有单位元与非平凡幂等元的环,f∶R→R是满射。文章证明了在一定的假设条件下,f满足{f(x),f(y)}_k={x,y}_k对所有的x,y∈R成立当且仅当f(x)=λx对所有的x∈R成立,其中λ∈Z(R)(R的中心)且λ~(k+1)=1.作为应用,给出了素环与von Neumann代数上保持此类性质映射的完全刻画。  相似文献   

2.
得到了满足下列任何一个条件时拟环的分解定理: (1) xy=ym(xy)pyn; (2) xy=ym(yx)pyn, 这里m=m(x,y)≥0, n=n(x,y)≥0, 且p=p(x,y)>1是整数.  相似文献   

3.
田晓正  周素英 《科技信息》2007,(28):100-101
问题中有f(x y)=f(x) f(y) axy或f(x y)=f(x)f(y)或f(xy)=xf(y) yf(x)的表达式,且已知f(x)在某点的导数值,求f(x)的表达式.这一类函数表达式的求法,表面上与导数无关,实际上是导数定义式的应用,先由导数定义式求出f'(x),即lim(h→0)f(x h)-f(x)/h=f'(x)'再确定f(x)。  相似文献   

4.
利用Leray—Schauder原理,在对f无任何增长性限制的情形下,讨论了带导数项的一端固定一端滑动的静态梁方程 y^(4)(x)=f(x,y′,y″,y′″),y(0)=y′(0)=y′(1)=y″′(1)=0 解的存在性,并在Lipschitz条件下,研究了其解的唯一性。  相似文献   

5.
通过把线性微分方程xy(n) ny(n-2)=f(x)化为可逐次积分的线性微分方程,找出了它通解的形式,给出了严格的证明,并将它推广,得到xy(n) (x n)y(n-1) (n-1)y(n-2)=f(x)的通解.  相似文献   

6.
通过把线性微分方程xy(n)+ny(n-1)=f(x)化为可逐次积分的线性微分方程,找出了它通解的形式,给出了严格的证明,并将它推广,得到xy(n)+(x+n)y(n-1)+(n-1)y(n-2)=f(x)的通解.  相似文献   

7.
本文证明了奇异非线性两点边值问题—y″=f(x,y)—h(x),y(0)=0,y′(1)=ky(1)在条件(H_1)~(H_1)成立时只有一个正解.  相似文献   

8.
考虑二阶线性常微分方程 y″(x)+P(x)y(x)=f(x), (1)称方程(1)的某一解y(x)在[0,+∞)上振动,如果对任意的T>0,则y(x)在[T,+∞)上必有零点。否则,如果存在T>0,使当x>T时y(x)>0(<0),就称y(x)为最终正解(负解)。文献[1]证明了若在[0,+∞)上P(x)>0,f(x)>0,P′(x)≥0,f′(x)≤0,则方程(1)的满足初值条件y(0)=y′(0)=0的解必振动。本文建立了一个判定方程(1)满足初值条件y(0)=y′(0)=0的解振动的不等式,这一不等式并不要求P′(x)≥0一定成立,另外,我们给出P(x)>0,P′(x)≤0时的比较定理。  相似文献   

9.
确定满足条件f(xyz)=f(xzy)的函数方程f(xy)+f(xy-1)=[Ψ(y)+Ψ(y)-1]f(x)+[Ψ(x)+Ψ(x)-1]f(y)+F(x)F(y)的一般解.  相似文献   

10.
在非线性项 f增长不受控制的前提下 ,讨论带导数项的方程 y(4) =f(x ,y ,y′,y″ ,y ) ,y(0 )=y′(0 ) =y″(1) =y (1) =0正解的存在性  相似文献   

11.
考虑在Banach空间非柱形域Ω上,微分系统 (IVP;τ,z0) z′=x′ y′=f1(t,x,y) f2(t,x,y)=f(t,z), (t,z)∈Ω, z(τ)=x(τ) y(τ)=z0=x0 y0 解的局部存在性,其中f1,f2分别满足紧性条件与耗散性条件,得到的结果推广并完善了已有的相关结果。  相似文献   

12.
讨论了二阶微分方程组x″(t)+λa(t)f(x(t),y(t))=0,y″(t)+λb(t)g(x(t),y(t))=0,0≤t≤1,x(0)=y(0)=x′(1)=y′(1)=0,其中f,g连续,并赋予f,g一定的增长条件,证明了方程组至少存在2个正解。  相似文献   

13.
用伸长变换和匹配条件讨论了一类具有无限长区域的非线性方程的摄动问题:y″ 2/xy′ εy^2y′=0,x∈(1,∞),y(1)=α,y(∞)=β,得到了该问题的零阶渐近解。  相似文献   

14.
讨论元素满足两个以上多项式关系之一的半素环的交换性,证明了:定理1 R为半素环,(?)x,y∈R,若x,y满足如下3个关系式之一,则R为交换环:(i)(xy)~m-(xy)~(m_1)(yx)~(m_2)∈Z(R);(ii)(xy)~5-(yx)~1∈Z(R);(iii)(xy)~(k_1)(yx)~(k_2)-(yx)~(k_2)(xy)~(k_1)∈Z(R).其中m,m_i,k_i,s及t与x,y有关且m_1+m_2,t,k_1+k_2为有界自然数.定理2 R为半素环,若R满足下述四个条件之一,则R可换:(1)(?)x,y∈R,x~(2m)y~(2n)-x~my~(2n)x~m∈Z(R)或x~sy~t-y~tx~s∈Z(R);(2)(?)x,y∈R,x~(2m)y~(2n)-y~nx~(2m)y~n∈Z(R)或x~sy~t-y~tx~s∈Z(R);(3)(?)x,y∈R,(yx)~n-yx~ny~(n-1)∈Z(R)或(xy)~n-x~ny~n∈Z(R);(4)(?)x,y∈R,(yx)~n-x~(n-1)y~nx∈Z(R)或(xy)~n-x~ny~n∈Z(R).其中m,n,s,t为自然数,而(1)及(2)中的m,n,s,t与x,y相关,(3)及(4)中n(>1)只与x(或y)有关.  相似文献   

15.
对于显函数y=f(x),若y的导数存在,则y的各阶导数:y'、y″、……y~(n),与原求导函数y一样,都各是关于同一变量x的函数:y′=f′(x)=f_1(x)、y″=f″(x)=f_2(x)、……y~(n)=f~(n)(x)=f_(n)(x)。相应地,若y通过中间变量u=(?)(x)是x  相似文献   

16.
§1.引言本文考虑双曲型方程u_(xy)=f(x,y,u,u_x,u_y) (1)满足u(x,0)=σ(x) 0≤x≤a (2_1) σ(0)=τ(0) (2) u(0,y)=τ(y) 0≤y≤b (2_2)的特征問題的解的唯一性問題。如果在矩形R:0≤x≤a,0≤y≤b上存在非負的连續函数C_i(x,y)(i=1,2,3),对于R上每点(x,y)及任意的u,p,q,(?),(?),q滿足  相似文献   

17.
在边值条件y(0)=y(1)=y″(0)=y″(1)=y(4)(0)=y(4)(1)=0或y(0)=y′(1)=y″(0)=y (1)=y(4)(0)=y(5)(1)=0下,研究方程d6y/dx6 h(x)f(y(x))=0的多个正解的存在性,在假定f满足在无穷远处超线性而在零点次线性的条件下获得至少有两个正解的结果.  相似文献   

18.
首先利用环理论方法证明:含有非平凡对称幂等元的对合素环R上的满射f强保持k-斜Jordan乘积,即满足_*{f(x),f(y)}_k=_*{x,y}_k=_*{x,_*{x,y}_(k-1)}对所有元x,y∈R成立,当且仅当f(x)=λx对所有x∈R成立,其中λ是R扩展中心的对称元且λ~(k+1)=1.这里,_*{x,y}=xy+yx~*是x与y的斜Jordan乘积.其次,给出该结果在算子代数上的应用.  相似文献   

19.
设Q={(x,y) |-≤x,y<π},△=a~2/ax~2+a~2/ay~2是Laplace算符,函数类△~rH 1, _2(r=0,1,2,……)由C(Q)中有直到2r阶偏导数并满足下述条件的函数f(x,y)组成:记ψ(x,y)=△~r(f)=△(△~r(-1)(f)),(△~o(f)=f),则对任意的-π≤x,x′,y,y′<π,成立着:|ψ(x,y)—ψ(x′,y′)|≤ψ_1(|x—x′|)+ω_2(|y—y′|),其中ω_1(t),ω_2(s)是任意给定的连续模,又f(x,y)∈C(Q),S_i,i(f:x,y)为f的Fourier部分和,而f(x,y)的Vall e-Poussin和是指量σ_(nm)~(kp)(f:x,y)=1/k+1 1/p+l sum from j=0 to sum from i=0 to pSn-j,m-i(f:x,y)文中讨论了量当n.m→∞时的渐近状态,在一定的条件下得到了渐近等式。所得结果是[3]中r=0时结果的推广,同时,简化了[3]中的余项。  相似文献   

20.
设A是一个有单位元1的代数.称映射f:A→A是一个弱可加映射,如果满足对任意的x,y∈A,存在t_(x,y)S_(x,y)∈F使得f(x+y)=t_(x,y)f(x)+s_(x,y)f(y)成立.本文证明了在一定的假设下,如果f是交换映射,则存在λ_0(x)∈A和一个从A到Z(A)的映射λ_1,使得对所有的x∈A有f(x)=λ_0(x)x+λ_1(x).作为应用,刻画了M_n(F)上一类交换的弱可加映射.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号