首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考虑了一类高阶KdV微分方程u_t+δu~2u_x+βu_xu_(xx)+γuu_(xxx)+ωu_(xxxxx)=0.通过行波变换u(x,t)=w(z),z=x+λt(λ≠0),这类高阶KdV微分方程变为常微分方程w~(4)+δww″+βw'2+γw~3+λw+μ=0,其控制项有4项:E(z,w)=w(4)+δww″+βw'2+γw3.主要结果是运用复方法给出这些常微分方程的3类亚纯解表达式,即椭圆函数解、有理函数解、eαz(α∈C)的有理函数解,并以行波复化modified Sawada-Kotera方程u_t+u_(xxxxx)+5uu_(xxx)+15u_xu_(xx)+5u~2u_x=0,Kaup-Kupershmid方程u_t-u_(xxxxx)+20uu_(xxx)+50u_xu_(xx)-80u~2u_x=0为例说明:除了该文所确定的亚纯解之外,或许有方程还有其他的亚纯解.  相似文献   

2.
讨论了非线性Schro。dinger方程:iut=-Δu-λu2u-(1+iα)u,α≠0,λ∈R.平衡解的稳定性,并应用行波解的方法证明了:当α>0时相应的平衡解是不稳定的;当α<0时,相应的平衡解是渐近稳定的.  相似文献   

3.
本文利用Z2指标理论获得Dirichlet边值问题-△u=f(x,u)a.ex∈Ω,u| Ω=0的多重解定理。其f(x,t)中,f(x,u)满足:存在整数m≥1,b>0,λm+b≤limt≤λm+1(λm是特征值问题-△u=λu,u∈Ω;u| Ω=0的t→0第m个特征值且0<λ1<λ2<…<λm<…)。  相似文献   

4.
通过行波变换将(2+1)维KD方程组转变为复域中的常微分方程,给出复合的(2+1)维KD方程组2(wk-3l2+3ak2 C1)u=2k4 u″-k2 a2 u3+(6k2b-3kal)u2+C2,v=lku+C1的一类非亚纯解的结构.  相似文献   

5.
研究了下列椭圆方程组的混合边值问题:δ2△u=u(V g1(u2)-a1),δ△w=w(-V g2(w2)-a2),-λ△V=u2-w2-C,u=u0,w=w0,V=V0 on ГD,(e)u/(e)v=(e)w/(e)v=(e)v/(e)v=0 onГN·这里u0,w0,V0∈H1(Ω)∩ L∞(Ω),u0,w0≥0 in Ω,v是ГN上的单位外法向量. 证明了方程组解的存在性和唯一性.  相似文献   

6.
文章主要考察一类非线性波动方程uu+uxxxx+λu=σ(ux)x,λ>0的柯西问题解的存在性和唯一性.当σ(ux)x=-β(|ux|pux)x,β>0,p>0时,通过构造稳定集(位势井)W={u∈H2(R)|‖uxx‖2+λ‖u‖2<2(p+2)/pd}和不稳定集V={u∈H2(R)|‖uxx‖2+λ‖u‖2>2(p+2)/d},得到了W和V在上述方程的流下是不变的,并证明了如果初始能量E(0)≤d,那么当初值u0∈(-W)时,问题存在惟一整体解u∈C1([0,∞);H2);当初值u0∈V时,问题的解在有限时刻T1∈(t1,t1+4φ(t1)/pφ'(t1))发生爆破.  相似文献   

7.
以平凡解u=0,v=1作为种子解,代入矩阵谱问题Φx=UΦ,U=(-λ+u v~(1/2) v λ-u),Φt=VΦ,V=(V1 V2 V3 -V1),其中V1=-λ2+u2+1/6ux+1/6(lnv)xx+1/8(lnv)x2,V2=vλ+uv-1/2vx,V3=(vλ)~(1/2)+uv~(1/2)+vx/(4v~(1/2)).求出基本解.选取两个基本解φ(λj)=(coshξjβjsinhξj+λj coshξj),ф(λj)=(sinhξjβjcoshξj+λj sinhξj),其中ξj=βj(x+λj t),βj=(λj2+1)~(1/2),(1≤j≤N-1).再利用克莱姆法则和达布变换求出方程的非平凡解,最后又具体给出N=1和N=2两种情形.  相似文献   

8.
陈武华 《广西科学》2001,8(3):165-167
讨论退化的抛物型方程 (um/ m) t=(k(u) ux) x +un g(u)的行波解问题 .其中 n≥ 0 ,m >0 ,g:[0 ,1]→R+ ,g(1) =0且存在θ∈ (0 ,1)使得 g(u)≡ 0 ,u∈ [0 ,θ) ,g(u) >0 ,u∈ (θ,1) ,g(u)在 [θ,1]上 L ipschitz连续 .证明存在唯一一个正波速的波前解 ,其中当 0 相似文献   

9.
主要研究Dirichlet边界条件下一类临界双调和椭圆方程组{Δ~2u-μ_1u/︱x︱~4=2α/α+β︱u︱~(α-2)u︱v︱β+λ_1u,x∈Ω Δ~2v-μ_2v/︱x︱~4=2α/α+β︱u︱~α︱v︱β-2v+λ_2v,x∈Ω解u=du/γ=0,v=v/γ=0,x∈Ω的存在性。通过精确的能量估计,并运用山路引理得到了这类方程组非平凡解的存在性。  相似文献   

10.
证明了n维欧式空间中复Ginzburg-Landau方程ut-(λ+iα)Δu+(κ+iβ)|u|p-2 u-γu=0在光滑有界区域Ω上弱解的唯一性,其中,i=(-1)(1/2),λ,κ,γ>0,α,β∈R.用先验估计的方法将2维空间中唯一性结果推广到了任意维空间上,只限制指数2相似文献   

11.
本文研究椭圆边值问题-Δu+λ|u|p-2u=h(x),x∈RN u(x)→0,|x|→∞ 广义解的存在性.其中1≤N,1<p<+∞,λ>0,h∈LP'(RN),p1=p/p-1.利用变分方法及临界点理论得到该问题在空间εp中至少存在的一个广义解.  相似文献   

12.
讨论了非线性Schrdinger方程:i(eu)/(et)=-Δu-λ|u|2u-(1 iα)u,α≠0,λ∈R.平衡解的稳定性,并应用行波解的方法证明了:当α>0时相应的平衡解是不稳定的; 当α<0时,相应的平衡解是渐近稳定的.  相似文献   

13.
本文主要研究了带有位势V(x)及非线性项g的Schrdinger-Kirchhoff型方程{(a+b∫[|u|2+V(x)u2]dx[-Δu+V(x)u]+λh(x)u=g(x,u)x∈R3-Δ=λh(x)u2x∈R3(λ≥0)非平凡解的存在性,利用近代变分学中山路定理得到其至少存在一个非平凡解.  相似文献   

14.
在区间I =[0 ,b]与球域Ω ={x∈RN,N〉 1:|x |〈b}上 ,对a〉 1,构造出奇异问题-△u =λua ,u〉 0 ,x∈Ω ,u| Ω=0的精细逼近解 .其中在区间上的逼近解为最佳 ,即当a =3时 ,精确解是u =[λb2 ]1a +1[x(b -x) ]2a +1;而在球域上的逼近解是几乎最优的 .这里λ〉 0为参数 .  相似文献   

15.
利用Ekeland's变分原理和山路引理,考虑合作型拟线性椭圆系统-Δpu=λa(x)|u|p-2u+λ/β+1b(x)|u|α|v|βv+Fu(x,u,v),x∈Ω;-Δqu=λc(x)|v|q-2v+λ/α+1b(x)|u|α|v|βu+Fv(x,u,v),x∈Ω;u=v=0,x∈Ω在参数λ从左边无限接近于相应的非线性特征值问题的第一个特征值λ1时,系统有3个非平凡解.  相似文献   

16.
一类含时滞反应扩散方程波前解的存在性   总被引:2,自引:2,他引:2  
利用J.Wu和X.Zou(J.Dynam.Diff.Eqns.,2001,13(3):651~687.)建立的解的存在性理论,研究 2u1(x,t) u1(x,t) t=D1b1+a1u2(x,t-τ2)], x2+r1u1(x,t)[1-u1(x,t-τ1) u2(x,t) 2u2(x,t) t=D2b2+a2u1(x,t-τ4)], x2+r2u2(x,t)[1-u2(x,t-τ3)的行波解,其中x∈R,t∈R,ui(x,t)∈R,Di>0,ri>0,ai>0,bi>0,i=1,2,a1a2<1,τj>0,j=1,2,3,4,得到了这个系统波前解存在的充分条件.  相似文献   

17.
文章主要讨论带有位势V(x)的非线性Schrdinger-Kirchhoff型方程﹛(a+b∫[|▽u|~2+V(x)u~2])[-Δu+V(x)u]+λh(x)φu=g(x,u),x∈R3,-Δφ=λh(x)u~2,x∈R~3.(1)(λ≥0)非平凡解的存在性,利用山路定理得到其至少存在一个非平凡解.  相似文献   

18.
证明了当λ>0时p -LaplaceDirichlet问题-div (| u| p - 2 u) =λ|u| q - 2 u + |u| p - 2 u ,u∈W1.p0 (Ω)无穷多解的存在性 ,其中Ω是RN 中的有界域 ,1相似文献   

19.
在交换代数环论的基础上,通过首次积分方法和符号运算系统Mathematica,研究了(3+1)维修正KdV-Zakharov-Kuznetsev方程ut+αu2ux+uxxx+uxyy+uxzz=0,得到了其新精确行波解.  相似文献   

20.
主要研究了以下一类非齐次Klein-Gordon-Maxwell方程:-Δu+[m2-(w+Φ)2]u=|u|2*-1+g(x),x∈R3;-ΔΦ+Φu2=-ωu2,x∈R{3解的存在性.在g(x)满足一定的假设条件下,通过变分方法得出系统解的存在性结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号