首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

2.
设三角级数α_0/2+sum from n=1 to ∞(a_ncos nx+b_nsin nx)的余弦系数a_n有相同符号,(全部a_n≥0,或全部a_n≤0)正弦系数b_n亦有相同符号,简称这种级数为同号系数级数。在[1]中我们证明了:设f~((k))(x)存在而且是连续的。当f(x)的富里埃级数是同号级数时,  相似文献   

3.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

4.
设f(x)∈L~P(Ω_n),1≤P≤2,δ>(n-1)(1/p-1/2),而σ_N~8(f)(x)表示f(x)在n维球面Ω_n上的Ces(?)ro平均.本文证明了(?)1/(N+1)sum from k=0 to N|σ_k~8(f)(x)-f(x)|~2a_k=0 a、e、x∈Ω_n其中权系数a_k>0满足1≤1/N+1(sum from k=0 to N)a_k≤A(A是一个绝对常数)  相似文献   

5.
文中给出矩阵级数求和公式:sum from k=0 to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)或sum from k=-∞ to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)此处C_k(k=0,±1,……)和α是复数,A是n阶矩阵,E是单位阵,而P是满足下列条件的矩阵:P~(-1)AP=diag{λ.,……,λ_n}λ_i∈D(i=1,2……,n),D是Talo级数f(Z)=sum from k=0 to ∞(C_k(Z-α)~k)或Laurent级数f(Z)=sum from k=-∞ to ∞(C_k(Z-α)~k)的收敛域.同时,我们证明了有介单调的矩阵序列收敛,而且按照任何矩阵范数,上述矩阵序列也是收敛的.  相似文献   

6.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

7.
本文主要证明了下述定理: 设f(z)=sum from n=0 to∞a_nz~(λ_n)为一超越整函数,那么: (1)当f(z)具有(b,d)型A.P.间隙时,对任一有穷复数a,都有δ_s(a,f)≤1-1/d;当b>0时,还有:sum from a≠∞ to δ(a,f)≤1-1/d。 (2):当λ_(m+1)-λ_m(m=n,n+1,…)的最大公因子d_n→∞(n→∞)时,对在一慢增长的亚纯函数a(z),都有:_s(a(z),f)≤1/2。  相似文献   

8.
设f(x)是定义在[0,+∞)上的函数,吴华英引进了S. Bernstein多项式推广的另一种形式: B_n~*(f, x)=e~(-(nx)~2) sum from n=k=0 to ∞ f(k~(1/2)/n)(nx)~(2l)/k!它不同于O. Szasz提示的S. Bernstein多项式在无穷区间的推广形式 B_n(f, x)=e~(-nx) sum from n=k=0 to ∞ f(k/n)(nx)~k/k! 以上两种形式都是[0,+∞)上的推广。本文将函数f(x)定义在(-∞,+∞)上,并给出它的推广形式:  相似文献   

9.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

10.
本文在对系数的幅角加以限制的条件下研究了Bieberbach猜想,得到了下述结果, 1·若f(z)=z+sum from n-2 to ∞ a_nz~n∈S,arga_n=θ_n, φ_n=θ_(n+1)-θ_n-θ_2, 如果α_n≤|φ_n|,n≥7,则|a_n|相似文献   

11.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

12.
Baskakov算子对有界变差函数的点态逼近   总被引:1,自引:0,他引:1  
设f(x)在[0,∞)的每一有限子区间上为有界变差函数,作用在f(x)上的Szasz—Mirakyan算子和Baskakov算子分别为:S,(f,x)=sum from k=0 to ∞ (f(k/n)e~(nx)((nx)~k)/kl),V_n(f,x)=sum from k=0 to ∞ (f(k/n)((n+k-1)/k))x~k/(1+x)~(n+k)) Fuhua Cheng借助Bojanic的方法得出了S_n(f,x)对f(x)的点态逼近度。本文在学习与参考[2]的基础上,更多地应用概率方法,来研究V_n(f,x)对f(x)的点态逼近度。在处理尾部时,我们得到了一个一般性的结果(文中的引理5),它不仅可以用来证明本文的定理1,而且也适用于其他算子,从而简化了[2]中的计算。  相似文献   

13.
证明了如下定理: 设f(z)=sum from n=1 to ∞(1/n)a_nP_m(z)为一整函数,P_n(z)为Legendre多项式,λ为一正数,如果(n+1~λ/n)a_n/a_(n+1)|为n的终归单增函数,则有 (α,f)<{1+0(1)}λ~(-λ-1)Γ(1+λ)e~λv(α,f)μ(α,f);■  相似文献   

14.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

15.
设 f(x)为[0,∞)上的函数.所谓 Szász-Mirakyan 算子是:S_a(f,x)=e~(-nx) sum from k=0 to ∞ f(k/n) (nx)~k/k! (1)在[1]中,O·Szász 得到定理 A 设 f(x)在[0,∞)的任一子区间上有界,且存在 m∈N  相似文献   

16.
本文明了:设g=p_1p_2…p_n=10β+9型奇数,p_1,p_2……,p_3是不同素数,n,x,α,r为正整数,方程sum from k=0 to n(x-g~αk)~r=sum from k=1 to n(x+g~αk)~r仅有正整数解r=1,x=g~αn(n+1)和r=2,x=2g~αn(n+1)。  相似文献   

17.
设函数f(x)∈L(0,2π)是以2π为周期的周期函数,它的福里哀级数是 sum from 0 to ∞ (A_n(x))≡1/2α_0 sum from 1 to ∞ (α_ncosnx b_nsinnx) 固定x,瓦虚尼[1]证明了:当函数  相似文献   

18.
本文给出了勒襄特(Legendre)级数sum from n=0 to ∞a_nP_n(z)在收敛椭园E_p上一点z_0=cosh(μ iβ_0)收敛的充分必要条件为级数sum from n=0 to ∞δ_ne~(nβ0~i)收敛,其中δ_n=n~(-(1/2))e~(nμ)a_n。本文证明了勒襄特级数的亚倍尔(Abel)型定理:若级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0),且sum from n=0 to ∞a_nP_n(z_0)收斂,则sum from n=0 to ∞a_nP_n(z)=sum from n=0 to ∞a_nP_n(z_0),这里z→z_0是在E_μ内沿与E_μ正交的双曲线H_(β_0)进行。本文还证明了勒襄特级数的刀培(Tauber)型定理:设级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0)为E_μ上一定点,令δ_n=n~(-(1/2))e~(nμ)a_n,如果δ_n=o(1/n),且sum from n=0 to ∞a_nP_n(z)=S,这里z→z_0是在E_μ内沿H_(β_0)进行,sum from n=0 to ∞a_nP_n(z_0)收敛,其和为S。  相似文献   

19.
这里x=col.(x_1,x_2,…,x_n),A(t)是t的一致概周期(一致Π.Π.)n阶方阵,f(t)是t的一致Π.Π.n维列向量函数,‖x‖=sum from i=1 to n |x_i|,A(t)=(α_(ij)(t)),‖A(t)‖=sum from i+j=1 to n|α(ij)(t)|或欧氏模。 从文[1]知,对于周期线性系统情形:A(t+T)=A(t),f(t+T)=f(t),T>0,系统(1)有T-周  相似文献   

20.
在本文中给出两种方法来求:当n→∞时, J_n(ω)=integral from n=-1 to 1 ρ(x)((u_n(1)-u_n(x))/(1-x)~ω)dx的渐近表达式,这里u_n(x)为n次多项式,ρ(x)为适当选取的函数在开区间(-1,1)中连续并取正值,ω为适当的正实数。第一种方法利用多项式u_n(x)具有特殊形式的循环公式。第二种方法是:当u_n(x)具有洛巨里格表达式且ω的取值在适当的区间中时,可以求出(?)_n(ω)=integral from n=-1 to1 ρ(x)((u_n(x))/(1-x)~ω)dx,于是利用解析延拓法,当ω的取值在更大的区间中时,可以求出J_n(ω)。利用第二种方法证明了下述定理: 设α≥-1/2且α≥β>-1。令f(x)=sum from n=0 to ∞c_nP_n~((α,β))(x),这里P_n~((α,β))(x)表示雅谷比多项式,如果c_n终规为正,且sum from n=0 to ∞c_nP_n~((α,β))(1)=0, 则按照λ=1或1<λ<2,integral from n=0 to 1 ((f(x)/(1-x)~λ))dx存在的充要条件分别是Σc_nn~αlogn收敛或Σc_nn~(α 2(λ-1))收敛。利用本定理即可推出:作者在函数项级数的积分一文中所证明的关于勒襄特级数及切比晓夫级数的两定理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号