首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
阐述内燃机缸内冷态湍流流动和传热的一种二维数学模型,即用数值方法求解控制缸内气体流动和传热的一组偏微分方程组,得到缸内流场及温度场,进而求出壁面处温度的变化规律.计算是基于控制容积法,采用可在轴向伸缩变化的轴对称动坐标系.在压力较正方程和K-ε湍流模型中均考虑了流体的压缩性效应,旋流也作为因变量之一纳入了计算.对平顶及带凹坑的燃烧室的模拟计算结果与实验数据相吻合.  相似文献   

2.
在考虑旋转与曲率对边界层湍流结构影响的前提下,本文给出了一个适合于整个湍流边界层的统一的速度分布公式.根据现有的一些实验数据,用样条曲面拟合的办法,得到了该公式中参数β的变化关系.基于此速度分布公式,本文提出了一种新的计算二维不可压湍流边界层的积分方法.与其它积分方法相比,本方法所需的经验补充关系式少,且计算时不必给定初始形状因子H_0.计算结果与实验数据的比较表明,该方法可以较好地预示边界层流动.  相似文献   

3.
激光流体应变率仪是能将流体边界层的近壁区线性速度分布与菲涅尔双棱镜分光形成的干涉条纹的间距线性特性结合起来的测量仪器,能够直接测量固体表面边界层的速度梯度,而且不干扰流场,并由速度梯度可推出壁面剪切应力。用这种仪器在二维流动管道中进行了测量层流和湍流的初步试验。试验表明,对层流的测量结果与理论分析基本一致。因此,该仪器可作为流体边界层的壁面阻力测量及监视工具。  相似文献   

4.
二维激波边界层干扰的数值分析   总被引:1,自引:0,他引:1  
该文利用二维可压缩雷诺平均Navier-Stokes方程,采用k-ε湍流模式,运用半离散有限体积法,对捆绑火箭助推器和芯级之间的激波边界层干扰进行了二维数值模拟.数值结果表明,在激波边界层的干扰下,壁面边界层流动出现了分离和再附过程,压力和温度出现激烈变化.  相似文献   

5.
变壁温平板空气强迫对流边界层扩展方程及相似解   总被引:4,自引:0,他引:4  
刘颖  王如竹  李云飞  范铭 《上海交通大学学报》2002,36(10):1462-1464,1470
从控制真实流体流动的NS方程出发,在一种新的近似假设基础上,推得了变壁温平板空气强迫对流边界层扩展方程的数学模型,对其中的动量方程和能量方程进行了相似性生理和数值求解,给出了壁面温度呈指数规律变化时的无量纲速度,温度分布曲线。该结果在中,小雷诺数范围内较传统边界层方程的计算结果具有较好的准确性。  相似文献   

6.
对恒壁温竖直加热平板的自然对流边界层的流动稳定性与转捩过程进行了试验研究,研究结果表明在外层速度剖面拐点处测得的线性不稳定性的特性与Brewster和Gebart的计算基本一致。在低频成分处先增长后,随着Grashof数的增加高频成分迅速发展,在湍流化过程中逐渐形成浮力子区,与此同时,在内层近壁处的测量发现,在更高频段存在一种具有较强选频特性的不稳定波及其亚谐波,并在转捩后期Gr≈378.6时于其  相似文献   

7.
该文采用了管内边界层流动的二维模型,研究了火炮身管内边界层流动和传热的数值计算。并且把身管内气流对壁面传热和管内热传导的解结合起来求解,以提供膛内传热分析中重要的壁温值和对流传热值,数值计算结果与文献报导较一致。  相似文献   

8.
考虑趋旋微生物的影响,研究纳米流体在拉伸缸表面上的稳态二维边界层流动问题。建立控制方程,采用打靶法和Runge-Kutta法进行数值求解,对不同物理参数下的速度场、温度场、浓度场和运动微生物密度场的变化趋势进行图形化分析。结果表明:在靠近缸体表面处,速度、温度、浓度和微生物密度均随曲率参数的增大而减小,而在远离缸体表面时变化情况却相反;微生物密度随Brown运动参数、Peclet数、Schmidt 数和生物对流常数的增大而减小,而随热泳参数的增大而增大。  相似文献   

9.
喷动床导向管内粗颗粒的动特性   总被引:1,自引:0,他引:1  
喷动床是处理粗颗粒物料的高效反应器.应用粒子图像测速仪(PIV)研究了喷动床导向管内粗颗粒物料的运动规律,测量了粗颗粒物料的瞬态流场及湍流度分布.粒子运动速度基本是轴对称的,轴心处速度最高;而在近壁处低,当喷动气流速度增加时粒子湍流度也增加,轴心处湍流度高于近壁处的湍流度.管中的流动湍动十分剧烈,湍流度始终很大,这加强了气流和物料间的热量和质量的传递.  相似文献   

10.
柴油机缸内壁面热边界层的形成及分析   总被引:1,自引:0,他引:1  
在用贯穿式光纤传感器测量柴油机缸内壁面法向不同位置火焰温度的基础上,研究了缸内燃烧火焰对壁面热边界层的影响,同时研究了运转和结构参数对壁面热边界层的影响.结果表明缸内壁面有热边界层形成,并在压缩行程至排气门开启这段时间形成稳定的热边界层,热边界层厚度大约为2.0~3.0mm;在有燃烧火焰时,热边界层中的气体扰动增加,壁面热边界层减薄,这种情况主要存在于压缩上止点附近到上止点后40°范围内;当负荷、转速、压缩比增大时,壁面热边界层减薄;冷却水温度对壁面热边界层基本没有影响.  相似文献   

11.
为了研究非稳态尾迹对平板表面流动和换热的影响,本文将非稳态尾迹引起的主流速度脉动简化为正弦变化,通过数值的方法研究了脉动频率和振幅对平板壁面边界层流动和换热的影响,研究结果表明:边界层内的速度、壁面温度、壁面摩擦系数和平均换热系数随着时间的变化做周期性脉动;边界层内流动与主流之间存在着相位差,壁面距离越小,相位差越大;边界层内的速度和壁面摩擦系数脉动幅度的大小与主流脉动频率和振幅成正比;壁面温度和壁面平均换热系数的波动大小与主流脉动频率成反比,与脉动振幅成正比,当主流脉动频率和脉动振幅增加到一定值后,靠近壁面的地方出现回流,回流强度与脉动频率和振幅成正比。  相似文献   

12.
本文在文献[1]的基础上,用离散涡模型与湍流边界层理论相结合的方法,研究了超临界雷诺数下圆柱突然起动后的分离旋涡运动。文中考虑了二次涡的影响和涡旋的粘性扩散。计算结果与实验结果相符。  相似文献   

13.
本文对溢流反弧(R=100cm)不同粗糙度模型水力特性进行了系统的试验观测,探讨了壁面粗糙度对反弧水流流速分布、压强分布及边界层发展的影响。综合分析了流速分布及边界层发展的影响因素,得出了反弧水流边界层外部势流流速不受粗糙度影响的结论,并给出了边界层内流速指数n随粗糙度变化的关系式及反映壁面粗糙度影响的边界层厚度计算式。试验发现粗糙度对离心力压强影响甚微。  相似文献   

14.
广义Maxwell速度滑移边界模型   总被引:1,自引:0,他引:1  
针对存在挤压速度情形的近连续滑移流区微轴承内气体流动,基于气固界面Knudsen层内动量和能量通量的守恒,利用Grad13矩近似的速度分布函数,详细推导广义Maxwell速度滑移边界模型,给出了其与典型Maxwell速度滑移边界的差别.研究表明在不考虑壁面温度梯度和挤压速度影响时,所得到的广义Maxwell速度滑移边界模型与典型Maxwell速度滑移模型是一致的;通过在微尺度气体轴承流动控制方程应用,获得一套适于气体轴承内流动气固表面速度滑移边界数学模型.  相似文献   

15.
近壁圆柱绕流积沙线的形成机理研究   总被引:1,自引:1,他引:0  
应用粒子图像测速(PIV)系统进行近壁圆柱绕流实验,探讨壁面积沙现象的机理.分别在两个动量损失厚度雷诺数1 092和796下,对两个不同直径的圆柱,取间隙比(圆柱与壁面间的距离与圆柱直径之比)0到1.5中的12个值进行实验,总结了不同情况下积沙线的形成特点.研究结果表明:积沙线形成的可能原因是由于圆柱对平板壁面边界层的影响,使得边界层流动在圆柱下游一到两倍圆柱直径的平板壁面处发生壁面分离,在分离区域流体速度减小,并且产生附着涡,流体运动挟带到此处的粒子速度减小,发生沉积而形成.  相似文献   

16.
为了分析非光滑表面对离心泵性能的影响,基于仿生凹坑表面的减阻特性,将凹坑型非光滑单元体排布于离心泵叶片的工作面,建立具有非光滑表面的叶轮离心泵的流动减阻特性分析模型,通过RNGk-ε湍流模型对离心泵内部流场进行数值模拟,分析具有非光滑表面叶轮的流动减阻特性,研究不同流量下非光滑表面对叶片近壁面的速度分布、剪应力和离心泵内部流场的影响.结果表明:凹坑型非光滑表面能够降低因黏性阻力产生的叶轮扭矩,其扭矩的最大降幅为5.8%;非光滑表面能够有效控制叶片近壁面边界层的流体流动,减小叶片的壁面剪应力;凹坑型非光滑表面能够降低离心泵叶轮内部流体的湍动程度,减小湍动产生的能量耗散,使叶轮内部的流体流动更加稳定并提高离心泵的效率.  相似文献   

17.
采用边界层抽吸方法提高透平通流部分效率   总被引:2,自引:0,他引:2  
介绍采用边界层抽吸提高透平通流部分效率的方法,给出了叶栅部次流损失与来流边界导位移厚度间的定量关系,通过边界层计算和透平级通流计算,确定合理的抽吸流量和相关的透平级通流部分主要结构尺寸,分析对透平极效率及热力特性的影响,对200MW汽轮机高压缸的计算表明,主要抽吸技术,可使缸效率提高0.4%左右。  相似文献   

18.
本文运用动态规划法原理和能预测湍流边界层分离的经验公式,建立了二维、对称扩压器优化命题的物理模型和适宜于动态规划法求解的数学模型,并得到满足约束的壁面最优速度分布。该计算结果与实验结果及用Pontryagin极大值原理的计算结果均甚为吻合,该方法可以推广至不对称扩压器的优化命题中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号