首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
基于测试耗氧速率和氧化动力学参数研究煤样粒径对煤低温氧化的影响。利用煤低温氧化测试系统,测算在供应气体流量、氧含量等给定条件下四类不同粒径范围煤样升温氧化耗氧速率,同时依据基于耗氧量建立的数学模型来测算煤低温氧化时不同粒径煤样活化能和指前因子等动力学参数,结果表明不同粒径煤样低温氧化耗氧速率变化分为缓慢耗氧、浅度耗氧和深度耗氧等三个阶段,在实验条件下煤样粒径小于0.198mm的煤样更适合煤低温氧化。  相似文献   

2.
为了掌握煤经多次氧化的自燃特性指标参数,对气肥煤、1/3焦煤、贫煤和无烟煤4种不同变质程度煤的煤样进行预处理,即将原煤样经过升温氧化后利用氮气冷却至常温,得其氧化煤样。采用煤质分析实验、物理吸附实验和煤自燃程序升温实验,对两次氧化过程中的耗氧速率、放热强度、CO产生率和特征温度等自燃特性参数进行对比实验研究。结果表明,2次程序升温过程中,煤样的自燃特性参数都随煤温呈指数变化规律。氧化煤样的耗氧速率、放热强度和CO产生率均表现出在氧化反应前期大于原煤样,氧化反应后期小于原煤样;自然发火的特征温度低于原煤样,说明氧化煤样更容易发生自燃,危险性较大。  相似文献   

3.
为了研究不同氧浓度和温度下侏罗纪煤的氧化动力学参数,在不同供氧条件下的基础上,通过程序升温氧化实验装置,应用化学反应动力学原理,计算出我国典型侏罗纪煤样的耗氧速率及氧化反应动力学参数。结果表明,各煤样的表观活化能随温度及供氧浓度变化而变化。当供氧浓度一定时,各煤样氧化反应的表观活化能在30~60℃和大于70℃2个温度段内各不相同并呈分段性,前者大于后者。若供氧浓度变化时,当供氧浓度大于10%时,各煤样氧化反应的表观活化能都比较小,且随着供氧浓度的改变其变化较小;供氧浓度在5%~10%时,各煤样氧化反应的表观活化能随供氧浓度的降低呈明显增加趋势,说明低氧条件下,煤的氧化过程发生了变化,从而进一步抑制了煤的氧化反应。  相似文献   

4.
对3种不同自燃倾向性煤样进行低温氧化实验,利用CO体积分数与煤体温度间变化的计算模型,求解出活化能和煤氧化过程发生转变的特征温度,同时结合热重-差示扫描量热(TGDSC,theremogravimetric analysis-differential scanning calorimetry)实验结果,分析了不同自燃性煤氧化特性和活化能的低温表征规律。结果表明:1)低温氧化阶段,CO生成量、耗氧量和耗氧速率随着煤自燃倾向性增强而增大;不同煤样在实验过程中出现同样的CO生成量和耗氧速率急剧上升的温度拐点,且煤的自燃性越强,该拐点温度越低,同时CO体积分数的变化具有明显的阶段性。2)不同自燃性煤氧化阶段活化能变化规律存在显著差异,当各煤样的温度到达活性温度时,活化能快速减少,且活化能变化点对应于煤氧化过程发生转变的特征温度点。3)根据煤特征温度和活化能的变化规律,把煤低温氧化进程分为4个阶段,分别为表面氧化、氧化自热、加速氧化和深度氧化。  相似文献   

5.
为研究原煤和氧化煤的低温氧化特性,以潘集矿煤样为研究对象,将原煤在90℃空气环境中恒温氧化150 min制备氧化煤样。采用程序升温实验装置测定了170℃以下原煤和氧化煤低温氧化阶段不同温度下的CO浓度,并基于CO浓度分阶段计算了原煤和氧化煤的表观活化能。此外,通过电子自旋共振设备测定了180℃以下原煤和氧化煤低温氧化过程中的自由基浓度。结果表明:原煤和氧化煤的CO浓度和表观活化能均随着温度的升高而增大,且表现出明显的阶段性特征;原煤和氧化煤的CO浓度和表观活化能在50~60℃范围内产生交叉;50℃以下,氧化煤的CO浓度大于原煤,表观活化能小于原煤;超过60℃,氧化煤的CO浓度小于原煤,表观活化能大于原煤。原煤的自由基浓度随着温度的升高而增大,氧化煤的自由基浓度随着温度的升高先降低后升高;相同温度下,氧化煤的自由基浓度大于原煤,但其自由基浓度的变化速率小于原煤。  相似文献   

6.
为确定煤自燃及由火灾引发的瓦斯爆炸数值模拟所需的基础参数,利用热重实验研究了4种不同变质程度煤样放热量、质量变化规律,确定了4种煤样低温氧化阶段温度范围.根据热重实验确定的低温氧化阶段,利用管式炉程序升温和色谱仪进行生成气体成分分析实验,得到不同温度下管式炉出口O2、CO、CO2气体体积分数,计算得出了耗氧速率、CO与CO2生成速率、放热强度随温度变化规律.研究结果表明:变质程度越高的煤,着火温度越高,低温氧化阶段温度范围越大;相同温度下,变质程度越低的煤,耗氧速率、CO与CO2生成速率、放热强度越大,越易自燃;CO生成速率大于CO2生成速率;耗氧速率、CO与CO2生成速率、放热强度随温度增加呈指数关系增加;随着耗氧速率增加放热强度呈线性关系增加.该研究可为煤自燃过程模拟计算与火区瓦斯爆炸危险性预测提供关键性基础参数.  相似文献   

7.
采用前向多层神经网络预测煤的自然发火期   总被引:3,自引:1,他引:2  
煤自燃是煤氧复合的结果,在不同温度下煤氧复合的耗氧速率及CO、CO2产生率与煤的实验自然发火期之间存在复杂的对应关系,采用S型函数的前向多层人工神经网络来描述这种对应关系,用煤自然发火实验测定的数十个煤样的自然发火期及不同温度下耗氧速率及CO、CO2产生率作为训练样本,用BP算法对网络进行训练,得到了神经元间的联结强度.通过少量煤样程序升温氧化实验得到不同温度下煤样的耗氧速率及CO、CO2产生率,将其代入此人工神经网络程序就可以确定煤的实验自然发火期.该方法实验时间短、用煤量少得多,结果与实际吻合.  相似文献   

8.
煤的耗氧速率是反映煤低温氧化能力的一个重要指标,也是预测煤最短自然发火期的重要参数之一。基于辅助热源恒热流加热方式搭建煤快速氧化实验台,快速模拟煤低温氧化升温过程,研究煤在快速氧化条件下的耗氧速率关联模型。根据所测定的煤快速氧化过程氧浓度变化,拟合出由单一活化能确定的耗氧速率计算模型;然后根据氧化速率的差异,使用双活化能分段确定出耗氧速率计算模型;最后基于煤氧复合机理,建立以恒热流方式加热的煤快速氧化升温数学模型。通过与所测煤温与氧浓度值的对比可知,基于单一活化能与双活化能分段描述的耗氧速率所获得的计算结果均表现出与煤快速氧化实验结果较好的一致性。  相似文献   

9.
为探究煤自燃过程的反应特征与预测煤自燃临界温度,对5种煤样进行了绝热氧化实验,采用煤样活化能指标在实验不同时间段的变化情况来表征煤低温氧化内在特征。然后运用线性回归性分析模型中线性显著性检验来确定临界温度点Tc。结果表明:实验初期煤样活化能波动范围极大,随着温度升高活化能趋于稳定,在实验后期,各煤样求得的活化能均处于55~70kJ/mol范围内,反映了煤低温氧化反应是由不稳定逐步过渡到相对稳定的过程;Tc与宏观升温速率突变范围相符合,验证了模型的准确性;同时Tc与实验中自热温度达到160℃所需时间t0自发呈线性关系,因此可以用绝热氧化装置测得t0来预测煤自燃临界点。研究成果可以对矿区防灭火和煤炭储运管理工作提供借鉴。  相似文献   

10.
煤低温氧化动力学参数与粒度关系实验研究   总被引:1,自引:0,他引:1  
探讨煤样粒度与表征煤氧化速度的活化能、指前因子的关系,了解粒度对煤的氧化反应速率等自然参数的影响,通过不同粒度东滩煤样的程序升温实验,测定了其不同温度下在空气中的耗氧速度。利用回归分析计算出反应的指前因子及活化能,并进行了分析。研究发现,随粒度降低,煤样氧化的活化能和指前因子均增加,并且在3mm处出现了突跃现象。说明煤的自燃性取决于粒度小于3mm颗粒的比例,而不是其平均粒度。  相似文献   

11.
采用气相质谱在线监测反应气体成分变化的方法,研究了1273~1473 K 范围内,不同比例 CO2- CO 混合气体对铁片恒温氧化的反应动力学.结果表明,氧化反应速率与二氧化碳分压呈线性关系,反应速率常数随 CO2/ CO 体积比值增大而减小,铁片氧化反应的表观活化能为(137.7±15.8) kJ·mol -1.该方法得到的结果与文献相比较,结果是可靠的,表明该方法可以用来在线研究气-固反应的动力学.  相似文献   

12.
采用热重-质谱联用(TG-MS)研究了氮气气氛中花生壳在不同升温速率(5,10和20℃/min)下的热解行为,分析得到了花生壳热裂解过程产生的小分子气相产物(CO2,CH4,H2,CO)随温度和升温速率变化的释放规律.结果表明:花生壳热裂解过程分为四个阶段,升温速率越大,花生壳热解的失重温度区间越宽,最大热解速率峰越陡峭.应用Flynn-Wall-Ozawa法得出花生壳热裂解过程不同转化率(0.2~0.8)下的活化能在57.3~88.6 k J/mol范围内.结合Achar微分法和Coats-Redfern积分法确定了该反应过程的机理函数表达式,将30种常用机理函数一一代入得出花生壳热裂解机理的最概然函数为球形对称的三维扩散Jander方程,反应级数为2级.  相似文献   

13.
煤焦-CO_2高温气化反应特性的实验研究   总被引:1,自引:1,他引:0  
利用STA409PC综合热分析仪以等温法研究煤焦-CO2高温气化反应,考察了煤种、气化温度及气流速度对煤焦气化反应的影响,并对其动力学参数进行了求算.实验结果表明:当气化温度低于煤焦灰熔点温度时,煤焦的碳转化率和反应速率峰值随气化温度的升高而增大,当气化温度高于煤焦的灰熔点温度时,煤焦的碳转化率和反应速率变化十分缓慢,甚至有下降的趋势;不同煤种的气化反应动力学参数有很大的差异,鞍钢煤焦和本钢煤焦的活化能均为140kJ/mol,阜新煤焦的活化能为70kJ/mol.当煤焦的气化反应温度高于煤焦的灰熔点温度时,扩散成为煤焦气化反应的主要限制环节,提高气流速度有利于煤焦气化反应的进行.  相似文献   

14.
采用等温法和非等温法,分析了Fe2O3-SiO2体系深度还原过程的动力学.等温法试验表明,在一定范围内升高还原温度,有利于焦炭气化反应的进行,进而增加反应的还原度和还原速率.等温法确定的Fe2O3-SiO2体系深度还原反应符合Avrami-Erofeev模型,金属铁颗粒的成核及长大是还原过程的限制性环节,反应的表观活化能为23533kJ/mol,指前因子为322×107min-1.非等温法试验表明,该体系深度还原反应在温度达到400℃之后开始发生,700℃之后还原反应速度加快,最终反应趋于平衡.非等温法确定的主要反应阶段的表观活化能为23866kJ/mol,指前因子为104×107min-1.  相似文献   

15.
O2/CO2气氛下燃煤过程中NOx排放特性实验研究   总被引:4,自引:2,他引:2  
利用沉降炉在O2/CO2和O2/N2气氛下对煤粉燃烧过程中NOx排放特性进行实验,研究了不同停留时间、燃料/氧化学当量比、温度等因素对燃煤过程中NOx的排放特性的影响,并对2种燃烧方式下NOx的排放特性进行对比.结果表明:在O2/CO2气氛下NOx的生成量远远低于空气气氛下NOx的生成量,其主要原因是在O2/CO2气氛中高CO2质量浓度导致气氛中生成较高含量的CO,从而在未燃烧碳表面发生NO/CO/Char的反应,促进了NO还原为N2;O2/CO2气氛中没有N2,避免了热力型NOx和快速型NOx的生成;约80%的再循环烟气致使NOx的停留时间大为增加,即延长了NOx的还原反应时间,从而降低了NOx的排放.  相似文献   

16.
在N-甲基二乙醇胺(MDEA)溶液吸收CO2反应机理的指导下,探讨了MDEA溶液浓度、反应温度和进气总流量对工业烟气中CO2吸收速率及吸收容量的影响。结果表明,当醇胺溶液浓度为0.03 mol/L,进气总流量为46.6 mL/min,温度为22℃时,吸收效果最佳,可达最大吸收速率0.43 mmol/s,吸收容量为16.05 mmol/mL,为动态法吸收CO2提供一定理论依据。  相似文献   

17.
In this work, the reduction behavior of vanadium-titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2 contents. Meanwhile, with the increase in CO and H2 contents, the increasing range of the medium reduction index (MRE) of sinters decreased. The increasing oxygen enrichment ratio played a diminishing role in improving the reduction behavior of the sinters. The reducing process kinetic parameters were solved using the modified random role model. The results indicated that, with increasing oxygen enrichment, the contents of CO and H2 in the reducing gas increased. The reduction activation energy of the sinters decreased to between 20.4 and 23.2 kJ/mol.  相似文献   

18.
The oxidation behavior of artificial magnetite pellets was investigated through measurements of the oxidation degree and mineralogical analysis. The results show that artificial magnetite pellets are much easier to oxidize than natural magnetite. The oxidation is controlled through two different reaction mechanisms. The oxidation of artificial magnetite is dominated by internal diffusion, with an activation energy of 8.40 kJ/mol, at temperatures less than 800℃, whereas it is controlled by chemical reaction, with a reaction activation energy of 67.79 kJ/mol, at temperatures greater than 800℃. In addition, factors such as the oxygen volume fraction and the pellet diameter strongly influence the oxidation of artificial magnetite:a larger oxygen volume fraction and a smaller pellet diameter result in a much faster oxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号